首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intra- and intermolecular forces competition was investigated in the 9,10-anthraquinone (1) and its derivatives both in vacuo and in the crystalline phase. The 1,8-dihydroxy-9,10-anthraquinone (2) and 1,8-dinitro-4,5-dihydroxy-anthraquinone (3) contain Resonance-Assisted Hydrogen Bonds (RAHBs). The intramolecular hydrogen bonds properties were studied in the electronic ground and excited states employing Møller-Plesset second-order perturbation theory (MP2), Density Functional Theory (DFT) method in its classical formulation as well as its time-dependent extension (TD-DFT). The proton potential functions were obtained via scanning the OH distance and the dihedral angle related to the OH group rotation. The topological analysis was carried out on the basis of theories of Atoms in Molecules (AIM—molecular topology, properties of critical points, AIM charges) and Electron Localization Function (ELF—2D maps showing bonding patterns, calculation of electron populations in the hydrogen bonds). The Symmetry-Adapted Perturbation Theory (SAPT) was applied for the energy decomposition in the dimers. Finally, Car–Parrinello molecular dynamics (CPMD) simulations were performed to shed light onto bridge protons dynamics upon environmental influence. The vibrational features of the OH stretching were revealed using Fourier transformation of the autocorrelation function of atomic velocity. It was found that the presence of OH and NO2 substituents influenced the geometric and electronic structure of the anthraquinone moiety. The AIM and ELF analyses showed that the quantitative differences between hydrogen bonds properties could be neglected. The bridged protons are localized on the donor side in the electronic ground state, but the Excited-State Intramolecular Proton Transfer (ESIPT) was noticed as a result of the TD-DFT calculations. The hierarchy of interactions determined by SAPT method indicated that weak hydrogen bonds play modifying role in the organization of these crystal structures, but primary ordering factor is dispersion. The CPMD crystalline phase results indicated bridged proton-sharing in the compound 2.  相似文献   

2.
n-Octanol is the object of experimental and theoretical study of spectroscopic signatures and intermolecular interactions. The FTIR measurements were carried out at 293 K for n-octanol and its deuterated form. Special attention was paid to the vibrational features associated with the O-H stretching and the isotope effect. Density Functional Theory (DFT) in its classical formulations was applied to develop static models describing intermolecular hydrogen bond (HB) and isotope effect in the gas phase and using solvent reaction field reproduced by Polarizable Continuum Model (PCM). The Atoms in Molecules (AIM) theory enabled electronic structure and molecular topology study. The Symmetry-Adapted Perturbation Theory (SAPT) was used for energy decomposition in the dimers of n-octanol. Finally, time-evolution methods, namely classical molecular dynamics (MD) and Car-Parrinello Molecular Dynamics (CPMD) were employed to shed light onto dynamical nature of liquid n-octanol with emphasis put on metric and vibrational features. As a reference, CPMD gas phase results were applied. Nuclear quantum effects were included using Path Integral Molecular Dynamics (PIMD) and a posteriori method by solving vibrational Schrödinger equation. The latter applied procedure allowed to study the deuterium isotope effect.  相似文献   

3.
A method for the estimation of the energy of intramolecular hydrogen bonds in conjugated systems existing in a variety of conformations is presented. The method is applied to determine the intramolecular hydrogen bond energy in 3-aminopropenal and 3-aminopropenthial. According to the proposed estimation scheme, the intramolecular H-bond energies are found to be of the order of 5-7 kcal/mol. These results are compared with those obtained by using other estimation schemes as well as with the recent results by other authors. Also, the H-bond energies in dimers and trimers of the two molecules are calculated and compared with the corresponding data for internally hydrogen-bonded monomers. This comparison shows that the bond equalization effect is primarily due to proton donor-proton acceptor proximity. In comparison with intermolecular hydrogen bonds, the rigidity of the chelate skeleton enhances this proximity effect. The same effect can be seen in systems with intermolecular hydrogen bonds, although its magnitude is diminished because of the absence of additional forces which pull the proton donor and proton acceptor groups toward each other. No specific resonance-assisted origin of the intramolecular hydrogen bond energy seems to be needed to elucidate the energetics of these bonds.  相似文献   

4.
5.
HCN(HNC)与NH3, H2O和HF分子间相互作用的理论研究   总被引:1,自引:0,他引:1  
在MP2/aug-cc-pVTZ水平上, 对HCN(HNC)与NH3, H2O和HF分子间可能存在的氢键型复合物进行了全自由度能量梯度优化, 通过在相同水平上的频率验证分析发现了稳定的分子间相互作用形式是HCN(HNC)作为质子供体或作为质子受体形成的复合物. 基组重叠误差对总相互作用能的影响均小于3.34 kJ/mol. 通过自然键轨道(NBO)分析, 研究了单体和复合物中的原子电荷和电荷转移对分子间相互作用的影响. 对称性匹配微扰理论(SAPT, Symmetry Adapted Perturbation Theory)能量分解结果表明, 在分子间相互作用中, 静电作用与诱导作用占主导地位, 而诱导作用与复合物的电荷转移之间具有良好的正相关性.  相似文献   

6.
Intra- and intermolecular interactions have been explored in selected N-oxide derivatives: 2-(N,N-dimethylamino-N-oxymethyl)-4,6-dimethylphenyl (1) and 5,5’-dibromo-3-diethylaminomethyl-2,2’-biphenol N-oxide (2). Both compounds possess intramolecular hydrogen bonding, which is classified as moderate in 1 and strong in 2, and resonance-assisted in both cases. Density Functional Theory (DFT) in its classical formulation as well as Time-Dependent extension (TD-DFT) were employed to study proton transfer phenomena. The simulations were performed in the gas phase and with implicit and explicit solvation models. The obtained structures of the studied N-oxides were compared with experimental data available. The proton reaction path was investigated using scan with an optimization method, and water molecule reorientation in the monohydrate of 1 was found upon the proton scan progress. It was found that spontaneous proton transfer phenomenon cannot occur in the electronic ground state of the compound 1. An opposite situation was noticed for the compound 2. The changes of nucleophilicity and electrophilicity upon the bridged proton migration were analyzed on the basis of Fukui functions in the case of 1. The interaction energy decomposition of dimers and microsolvation models was investigated using Symmetry-Adapted Perturbation Theory (SAPT). The simulations were performed in both phases to introduce polar environment influence on the interaction energies. The SAPT study showed rather minor role of induction in the formation of homodimers. However, it is worth noticing that the same induction term is responsible for the preference of water molecules’ interaction with N-oxide hydrogen bond acceptor atoms in the microsolvation study. The Natural Bond Orbital (NBO) analysis was performed for the complexes with water to investigate the charge flow upon the polar environment introduction. Finally, the TD-DFT was applied for isolated molecules as well as for microsolvation models showing that the presence of solvent affects excited states, especially when the N-oxide acceptor atom is microsolvated.  相似文献   

7.
Fourier transform infrared spectroscopy is a popular method for the experimental investigation of hydrogen-bonded aggregates, but linking spectral information to microscopic information on aggregate size distribution and aggregate architecture is an arduous task. Static electronic structure calculations with an implicit solvent model, Car-Parrinello molecular dynamics (CPMD) using the Becke-Lee-Yang-Parr (BLYP) exchange and correlation energy functionals and classical molecular dynamics simulations for the all-atom version of the optimized parameters for liquid simulations (OPLS-AA) force field were carried out for an ensemble of 1-hexanol aggregates solvated in n-hexane. The initial configurations for these calculations were size-selected from a distribution of aggregates obtained from a large-scale Monte Carlo simulation. The vibrational spectra computed from the static electronic structure calculations for monomers and dimers and from the CPMD simulations for aggregates up to pentamers demonstrate the extent of the contribution of dangling or nondonating hydroxyl groups found in linear and branched aggregates to the "monomeric" peak. Furthermore, the computed spectra show that there is no simple relationship between peak shift and aggregate size nor architecture, but the effect of hydrogen-bond cooperativity is shown to differentiate polymer-like (cooperative) and dimer-like (noncooperative) hydrogen bonds in the vibrational spectrum. In contrast to the static electronic structure calculations and the CPMD simulations, the classical molecular dynamics simulations greatly underestimate the vibrational peak shift due to hydrogen bonding.  相似文献   

8.
Formation of intra- and intermolecular hydrogen bonds in 2-thiophen-3-ylmalonic acid, the precursor of a polythiophene derivative bearing two carboxylic acid groups in the side chain, have been examined by Fourier transform infrared (FTIR) spectroscopy and ab initio quantum mechanical calculations. Interactions found in the FTIR spectra recorded for the melted and solid states are in good agreement with results provided by MP2/6-31+G(d,p) calculations on monomers and dimers, respectively. Specifically, inter- and intramolecular hydrogen bonds were detected in the solid and melted states, respectively. Calculations on dimers stabilized by intermolecular hydrogen bonds exclusively and by both intra- and intermolecular interactions indicated that the former structures are significantly more stable than the latter ones, which is fully consistent with experimental observations. On the other hand, intramolecular interactions in isolated monomers are favored in the melted state, which is dominated by a thermally driven entropic process.  相似文献   

9.
Car-Parrinello and path integrals molecular dynamics (CPMD and PIMD) simulations were carried out for the 10π-electron aromatic systems: 2-hydroxy-2,4,6-cycloheptatrien-1-one, commonly known as Tropolone (I) and 2-hydroxy-2,4,6-cycloheptatriene-1-thione, called Thiotropolone (II) in vacuo and in the solid state. The extremely fast proton transfer (FPT) and “prototropy” tautomerism in the keto-enol (thione-enethiol) systems have been analyzed on the basis of CPMD and PIMD methods level. Comparisons of two-dimensional (2D) free-energy landscapes of reaction coordinate δ-parameter and RO…O or RO…S distances shows that the OH… tautomer to be more favorable in the Thiotropolone. The hydrogen between the oxygen and the sulfur atoms adopts a starkly asymmetrical position in the double potential well. The values of the energy barriers for the FPT were calculated and suggested a strong hydrogen bond with low barrier for FPT mechanism. These studies and the 2D average index of π-delocalization 〈λ〉 landscape of time evolutions of RO1…O2 and RC7O2 or RC7S1 distances for the both crystals indicate that hydrogen bonds in the crystals of Tropolone (I) and Thiotropolone (II) have characteristic properties for the type of bonding model resonance-assisted hydrogen bonds and also low-barrier hydrogen bonds. In the crystal of the Thiotropolone (II), we found the hydrogen bond O H…S existing without the equilibrium of the two tautomers whereas in the crystal of the Tropolone (I) has been confirmed the hydrogen bond O H…O existing with the equilibrium of the two tautomers. It was also found the significant differences in frequency, speed, and the image of the FPT in the studied crystals. © 2018 Wiley Periodicals, Inc.  相似文献   

10.
11.
The intermolecular double proton transfer in dimers of uracil and 2-thiouracil is studied through density functional theory calculations. The reaction force framework provides the basis for characterizing the mechanism that in all cases has been associated to a dynamic balance between polarization and charge transfer effects. It has been found that the barriers for proton transfer depend upon the nature of the acceptor atoms and its position within the seminal monomer. Actually, the change in the nature of the hydrogen bonds connecting the two monomers along the reaction coordinate may favor or disfavor the double-proton transfer.  相似文献   

12.
Properties of hydrogen bonds can induce changes in geometric or electronic structure parameters in the vicinity of the bridge. Here, we focused primarily on the influence of intramolecular H-bonding on the molecular properties in selected ortho-hydroxybenzaldehydes, with additional restricted insight into substituent effects. Static models were obtained in the framework of density functional theory at B3LYP/6-311+G(d,p) level. The electronic structure parameters evolution was analyzed on the basis of Atoms In Molecules (AIM) and Natural Bond Orbitals methods. The aromaticity changes related to the variable proton position and presence of substituents were studied using Harmonic Oscillator Model of Aromaticity (HOMA), Nucleus-Independent Chemical Shift (NICS) and AIM-based parameter of Matta and Hernández-Trujillo. Finally, Car-Parrinello molecular dynamics was applied to study variability of the hydrogen bridge dynamics. The interplay between effects of the substitution and variable position of the bridged proton was discussed. It was found that the hydrogen bond energies are ca. 9-10 kcal/mol, and the bridged proton exhibits some degree of penetration into the acceptor region. The covalent character of the studied hydrogen bond was most observable when the bridged proton reached the middle position between the donor and acceptor regions. The aromaticity indexes showed that the aromaticity of the central phenyl ring is strongly dependent on the bridged proton position. Correlations between these parameters were found and discussed. In the applied time-scale, the analysis of time evolution of geometric parameters showed that the resonance strengthening does not play a crucial role in the studied compounds.  相似文献   

13.
A computational study of the monomers and hydrogen-bonded dimers of 2-pyrrolidone was executed at different DFT levels and basis sets. The above dimeric complexes were treated theoretically to elucidate the nature of the intermolecular hydrogen bonds, geometry, thermodynamic parameters, interaction energies, and charge transfer. The processes of dimer formation from monomers and concerted reactions of double proton transfer were considered. The evolution of geometry, vibrational frequencies, charge distribution, and AIM properties in going from monomers to dimers was systematically followed. The solvent effects upon dimer formation were investigated in terms of the self-consistent reaction field (SCRF Onsager model). For the monomers and three dimers, vibrational frequencies were calculated and the changes in frequencies of the vibrations most sensitive to complexation were discussed. The orbital interactions were shown to lengthen the X-H (X = N, O) bond and lower its vibrational frequency (a red shift). To better understand the nature of the corresponding intermolecular interactions, we performed natural bond orbital (NBO) analysis. Topological analysis of electron density at bond critical points (BCP) was executed for complex molecules using the Bader's atoms in molecules (AIM) theory. The interaction energies were calculated, and the basis set superposition errors (BSSE) were estimated systematically. Satisfactory correlations between the structural parameters, interaction energies, and electron density characteristics at BCP were found.  相似文献   

14.
Aromatic carboxylic acids are able to form diverse dimers and multimers due to their hydrogen bond donor and acceptor cites, as well as the aromatic rings. In this work, we examine nine benzoic acid dimers stabilized by hydrogen bonding and stacking interactions. Interacting quantum atoms methodology revealed that dominant attractive interactions in all of them, including hydrogen bonded systems, are due to exchange-correlation. Coulomb interactions are significant only in the most stable dimer with a double hydrogen bond, although the corresponding energy term is almost two times lower compared to the nonclassical one. Since interacting quantum atoms approach treats monomers binding by considering electronic energy only, in order to examine dissociation kinetics we performed density functional theory-based molecular dynamics simulations of selected stacked dimers: in 40% of the studied systems at 300 K thermal energy was sufficient to overpower barrier for dissociation within 1 ps, which resulted in the separation of the monomers, whereas 20% of them remained in the stacked position even after 5 ps. These results highlight the importance of noncovalent interactions, particularly weak stacking interactions, on the structure and dynamics of carboxylic acids and their derivatives.  相似文献   

15.
Application of MNDO, AM1, PM3, MNDO/H, and MNDO/M methods to a set of compounds with intramolecular hydrogen bonds suggested that none of these methods accurately modeled the characteristics of the hydrogen bonds. Since the MNDO/H and MNDO/M methods work well for intermolecular hydrogen bonds, we followed their example and modified MNDO for intramolecular hydrogen bonds by altering the empirical core–core repulsion energy function for all pairs of atoms involved in intramolecular O-H? O bonds. The resulting modified method models the behavior of these bonds quite well, especially as regards their geometry and the barrier to proton transfer. © 1992 by John Wiley & Sons, Inc.  相似文献   

16.
The properties of six dihydrogen-bonded (DHB) dimers with the BeH2 molecule as a proton acceptor were calculated by MP2, CCSD(T) and B3LYP methods. The structural, energetic and spectroscopic parameters are presented and analyzed in terms of their possible correlation with the interaction energy and the intermolecular H...H separation. The symmetry-adapted perturbation theory (SAPT) calculations were performed to gain more insight into the nature of the H...H interactions. The studied complexes are divided into three groups based on the calculated intermolecular distances and the interaction energies which range from approximately -1 to -42 kJ mol(-1). The analysis of the interaction energy components indicates that, in contrast to conventional hydrogen bonds, the induction energy is the most important term in the BeH2NH4+ complex. On the other hand, there is no sharp boundary between the DHB complexes classified as hydrogen bonded and van der Waals systems. The complexation-induced changes in vibrational frequencies and in proton shielding constants show a relationship with the interaction energy. The values of the 2hJXH and 3hJBeX coupling constants correlate well with the interaction energy and with the intermolecular distance.  相似文献   

17.
A density functional theory (DFT) and atoms-in-molecules (AIM) analysis has been applied to the intramolecular hydrogen bonding in the enol conformers of malonaldehyde and its fluoro-, chloro-, cyano-, and nitro-substituted derivatives. With the B3LYP/6-311++G(2d,p) method, good agreement between the DFT geometries and published experimental structures has been found. The donor-acceptor distance was also varied in a series of constrained optimizations in order to determine if energetic, structural, and topological trends associated with intermolecular hydrogen bonding remain valid in the intramolecular case. At very short donor-acceptor distances (<2.24 A), the hydrogen is symmetrically located between donor and acceptor; at distances longer than this, the hydrogen bonding is no longer symmetric. The AIM methodology has been applied to explore the topology of the electron density in the intramolecular hydrogen bonds of the chosen model systems. Most AIM properties for intramolecular hydrogen bond distances longer than 2.24 A show smooth trends, consistent with intermolecular hydrogen bonds. Integrated AIM properties have also been used to explore the phenomenon of resonance-assisted hydrogen bonding (RAHB). It is shown that as the donor-acceptor distance is varied, pi-electron density is redistributed among the carbon atoms in the intramolecular hydrogen bond ring; however, contrary to prior studies, the integrated atomic charges on the donor-acceptor atoms were found to be insensitive to variation of hydrogen-bonding distance.  相似文献   

18.
The macrocyclic title compound crystallizes as a dioxane solvate, C30H22Cl2N4O4·C4H8O2, with two independent formula units in the unit cell. The observed syn conformation is controlled by both intramolecular N—H...O hydrogen bonds and intermolecular C—H...π interactions. The relative macrocyclic inner bore is estimated to be 4.19 Å. In the crystal structure, molecules form dimers via intermolecular C—H...π interactions, and these dimers are, in turn, linked to form columns along the a axis by intermolecular C—H...O hydrogen bonds. Both X‐ray diffraction analysis and density functional theory (DFT) calculations reveal that the macrocycle possesses very high flexibility. This property, as well as the presence of six donor atoms accessible for coordination, makes the title macrocycle a very promising ligand for complexation with the majority of transition metals.  相似文献   

19.
The structure and vibrational spectra of hexamethylpyrromethene (HMPM) have been investigated by X-ray crystallography, IR and Raman spectroscopies, and density functional theory calculations. HMPM crystallizes in the form of dimers, which are held together by bifurcated N-H(...N)(2) hydrogen bonds, involving one intramolecular and one intermolecular N-H...N interaction. The monomers are essentially planar, and the mean planes of the monomers lie approximately perpendicular to one another, so that the four N atoms in the dimer form a distorted tetrahedron. The structure of the HMPM dimer is well-reproduced by B3LYP/6-31G calculations. A comparison of the calculated geometry of the dimer with that of the monomer reveals only small changes in the N-H...N entity and the methine bridge angles upon dimerization. These are a result of weakening of the intramolecular N-H...N hydrogen bond and the formation of a more linear N-H...N intermolecular hydrogen bond. Using an empirical relation between the shift of the N-H stretching frequency of pyrrole and the enthalpy of adduct formation with bases [Nozari, M. S.; Drago, R. S. J. Am. Chem. Soc. 1970, 92, 7086-7090], estimates of the strength of the intra- and intermolecular hydrogen bonds are obtained. IR and Raman spectroscopies of HMPM and its isotopomers deuterated at the pyrrolic nitrogen atom and at the methine bridge reveal that the molecule is monomeric in nonpolar organic solvents but dimeric in a solid Ar matrix and in KBr pellets. The matrix IR spectra show a splitting of vibrational modes for the dimer, particularly those involving the N-H coordinates. Due to intrinsic deficiencies of the B3LYP/6-31G approximation, a satisfactory reproduction of these modes of the monomeric and dimeric HMPM requires specific adjustments of the NH scaling factors for the calculated force constants and, in the case of the NH out-of-plane modes of HMPM dimers, also of intra- and intermolecular coupling constants. This parametrization does not significantly affect the other calculated modes, which in general reveal a very good agreement with the experimental data.  相似文献   

20.
Dimerization of the keto tautomer of acetohydroxamic acid has been studied using FTIR matrix isolation spectroscopy and DFT(B3LYP)/6-31+G(d,p) calculations. Analysis of CH3CONHOH/Ar matrix spectra indicates formation of two dimers in which two intramolecular CO...HON bonds within two interacting acetohydroxamic acid molecules are retained. A chain dimer I is stabilized by the intermolecular CO...HN hydrogen bond, whereas the cyclic dimer II is stabilized by two intermolecular NH...O(H)N bonds. Twelve vibrations were identified for dimer I and six vibrations for dimer II; the observed frequency shifts show a good agreement with the calculated ones for the structures I and II. Both dimers have comparable binding energies (DeltaE(ZPE)(CP)I, II=-7.02, -6.34 kcal mol-1) being less stable than calculated structures III and IV (DeltaE(ZPE)(CP)III, IV=-9.50, -8.87 kcal mol-1) in which one or two intramolecular hydrogen bonds are disrupted. In the most stable 10-membered cyclic dimer III, two intermolecular CO...HON hydrogen bonds are formed at expense of intramolecular hydrogen bonds of the same type. The formation of the less stable (AHA)2 dimers in the studied matrixes indicates that the formation of (AHA)2 is kinetically and not thermodynamically controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号