首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the development of an algorithm for general bilinear programming problems. Such problems find numerous applications in economics and game theory, location theory, nonlinear multi-commodity network flows, dynamic assignment and production, and various risk management problems. The proposed approach develops a new Reformulation-Linearization Technique (RLT) for this problem, and imbeds it within a provably convergent branch-and-bound algorithm. The method first reformulates the problem by constructing a set of nonnegative variable factors using the problem constraints, and suitably multiplies combinations of these factors with the original problem constraints to generate additional valid nonlinear constraints. The resulting nonlinear program is subsequently linearized by defining a new set of variables, one for each nonlinear term. This RLT process yields a linear programming problem whose optimal value provides a tight lower bound on the optimal value to the bilinear programming problem. Various implementation schemes and constraint generation procedures are investigated for the purpose of further tightening the resulting linearization. The lower bound thus produced theoretically dominates, and practically is far tighter, than that obtained by using convex envelopes over hyper-rectangles. In fact, for some special cases, this process is shown to yield an exact linear programming representation. For the associated branch-and-bound algorithm, various admissible branching schemes are discussed, including one in which branching is performed by partitioning the intervals for only one set of variables x or y, whichever are fewer in number. Computational experience is provided to demonstrate the viability of the algorithm. For a large number of test problems from the literature, the initial bounding linear program itself solves the underlying bilinear programming problem.This paper was presented at the II. IIASA Workshop on Global Optimization, Sopron (Hungary), December 9–14, 1990.  相似文献   

2.
The paper is devoted to solving the two‐stage problem of stochastic programming with quantile criterion. It is assumed that the loss function is bilinear in random parameters and strategies, and the random vector has a normal distribution. Two algorithms are suggested to solve the problem, and they are compared. The first algorithm is based on the reduction of the original stochastic problem to a mixed integer linear programming problem. The second algorithm is based on the reduction of the problem to a sequence of convex programming problems. Performance characteristics of both the algorithms are illustrated by an example. A modification of both the algorithms is suggested to reduce the computing time. The new algorithm uses the solution obtained by the second algorithm as a starting point for the first algorithm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Traditional pivoting procedures for solving the linear complementarity problem can only guarantee convergence for problems having well defined structures. Recently, optimization procedures based on linear, quadratic, and bilinear programming have been developed to extend the class of problems that can be solved efficiently. These latter approaches are the focus of this paper.The strengths and weaknesses of each of the approaches are discussed. The linear programming approach, advanced by Mangasarian, is the most efficient once an appropriate objective function is found. This requires the solution of a system of linear and bilinear equations that is easily solvable only in some cases. Extensions to this approach, due to Shiau, show some promise but are still limited to special cases of the general problem. The quadratic programming approaches discussed here are restricted to specialized procedures for the complementarity problem. One, proposed by Cheng, is based on the levitin-Poljak gradient projection method, and the other, due to Cirina, is based on Karush-Kuhn-Tucker theory. Both are only successful on some problems. The two bilinear programming algorithms discussed are the most general. For any problem, they are guaranteed to find at least one solution or conclude that none exist. One is a specialization of the recent biconvex programming algorithm of Al-Khayyal and Falk and the other is an entirely new implicit enumeration procedure.  相似文献   

4.
In this paper, we consider the linear complementarity problem (LCP) and present a global optimization algorithm based on an application of the reformulation-linearization technique (RLT). The matrix M associated with the LCP is not assumed to possess any special structure. In this approach, the LCP is formulated first as a mixed-integer 0–1 bilinear programming problem. The RLT scheme is then used to derive a new equivalent mixed-integer linear programming formulation of the LCP. An implicit enumeration scheme is developed that uses Lagrangian relaxation, strongest surrogate and strengthened cutting planes, and a heuristic, designed to exploit the strength of the resulting linearization. Computational experience on various test problems is presented.  相似文献   

5.
Finitely convergent algorithms for solving rank two and three bilinear programming problems are proposed. A rank k bilinear programming problem is a nonconvex quadratic programming problem with the following structure: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaacaWFTbGaa8% xAaiaa-5gacaWFPbGaa8xBaiaa-LgacaWF6bGaa8xzaiaa-bcacaWF% 7bacbiGaa43yamaaDaaaleaacaGFWaaabaGaa4hDaaaakiaa+Hhaca% GFRaGaa4hzamaaDaaaleaacaGFWaaabaGaa4hDaaaakiaa+LhacaGF% RaWaaabuaeaacaGFJbWaa0baaSqaaiaa+PgaaeaacaGF0baaaOGaam% iEaiabl+y6NjaadsgadaqhaaWcbaGaamOAaaqaaiaadshaaaGccaWG% 5bGaaiiFaaWcbaGaa8NAaiaa-1dacaWFXaaabeqdcqGHris5aOGaa4% hEaiabgIGiolaa+HfacaGFSaGaa4xEaiabgIGiolaa+LfacaWF9bGa% a8hlaaaa!5D2E!\[minimize \{ c_0^t x + d_0^t y + \sum\limits_{j = 1} {c_j^t xd_j^t y|} x \in X,y \in Y\} ,\]where X Rn1 and Y R n2 are non-empty and bounded polytopes. We show that a variant of parametric simplex algorithm can solve large scale rank two bilinear programming problems efficiently. Also, we show that a cutting-cake algorithm, a more elaborate variant of parametric simplex algorithm can solve medium scale rank three problems.This research was supported in part by Grant-in-Aid for Scientific Research of the Ministry of Education, Science and Culture, Grant No. 63490010.  相似文献   

6.
《Optimization》2012,61(1-2):165-180
In this paper we present an algorithm for the pooling problem in refinery optimization based on a bilinear programming approach. The pooling problem occurs frequently in process optimization problems, especially refinery planning models. The main difficulty is that pooling causes an inherent nonlinearity in the otherwise linear models. We shall define the problem by formulating an aggregate mathematical model of a refinery, comment on solution methods for pooling problems that have been presented in the literature, and develop a new method based on convex approximations of the bilinear terms. The method is illustrated on numerical examples  相似文献   

7.
A bilinear programming problem with uncoupled variables is considered. First, a special technique for generating test bilinear problems is considered. Approximate algorithms for local and global search are proposed. Asymptotic convergence of these algorithms is analyzed, and stopping rules are proposed. In conclusion, numerical results for randomly generated bilinear problems are presented and analyzed.  相似文献   

8.
This paper describes a technique for generating disjointly constrained bilinear programming test problems with known solutions and properties. The proposed construction technique applies a simple random transformation of variables to a separable bilinear programming problem that is constructed by combining disjoint low-dimensional bilinear programs.  相似文献   

9.
In this paper, we present a novel algorithm for the solution of multiparametric mixed integer linear programming (mp-MILP) problems that exhibit uncertain objective function coefficients and uncertain entries in the right-hand side constraint vector. The algorithmic procedure employs a branch and bound strategy that involves the solution of a multiparametric linear programming sub-problem at leaf nodes and appropriate comparison procedures to update the tree. McCormick relaxation procedures are employed to overcome the presence of bilinear terms in the model. The algorithm generates an envelope of parametric profiles, containing the optimal solution of the mp-MILP problem. The parameter space is partitioned into polyhedral convex critical regions. Two examples are presented to illustrate the steps of the proposed algorithm.  相似文献   

10.
Four NP-hard optimization problems on graphs are studied: The vertex separator problem, the edge separator problem, the maximum clique problem, and the maximum independent set problem. We show that the vertex separator problem is equivalent to a continuous bilinear quadratic program. This continuous formulation is compared to known continuous quadratic programming formulations for the edge separator problem, the maximum clique problem, and the maximum independent set problem. All of these formulations, when expressed as maximization problems, are shown to follow from the convexity properties of the objective function along the edges of the feasible set. An algorithm is given which exploits the continuous formulation of the vertex separator problem to quickly compute approximate separators. Computational results are given.  相似文献   

11.
Many nonconvex nonlinear programming (NLP) problems of practical interest involve bilinear terms and linear constraints, as well as, potentially, other convex and nonconvex terms and constraints. In such cases, it may be possible to augment the formulation with additional linear constraints (a subset of Reformulation-Linearization Technique constraints) which do not affect the feasible region of the original NLP but tighten that of its convex relaxation to the extent that some bilinear terms may be dropped from the problem formulation. We present an efficient graph-theoretical algorithm for effecting such exact reformulations of large, sparse NLPs. The global solution of the reformulated problem using spatial Branch-and Bound algorithms is usually significantly faster than that of the original NLP. We illustrate this point by applying our algorithm to a set of pooling and blending global optimization problems.  相似文献   

12.
The linear-linear and quadratic-linear bilevel programming problems are considered. Their optimistic statement is reduced to a nonconvex mathematical programming problem with the bilinear structure. Approximate algorithms of local and global search in the obtained problems are proposed. The results of computational solving randomly generated test problems are given and analyzed.  相似文献   

13.
We pursue the study of concavity cuts for the disjoint bilinear programming problem. This optimization problem has two equivalent symmetric linear maxmin reformulations, leading to two sets of concavity cuts. We first examine the depth of these cuts by considering the assumptions on the boundedness of the feasible regions of both maxmin and bilinear formulations. We next propose a branch and bound algorithm which make use of concavity cuts. We also present a procedure that eliminates degenerate solutions. Extensive computational experiences are reported. Sparse problems with up to 500 variables in each disjoint sets and 100 constraints, and dense problems with up to 60 variables again in each sets and 60 constraints are solved in reasonable computing times. Received: October 1999 / Accepted: January 2001?Published online March 22, 2001  相似文献   

14.
In this paper, a global optimization algorithm is proposed for solving sum of generalized polynomial ratios problem (P) which arises in various practical problems. Due to its intrinsic difficulty, less work has been devoted to globally solve the problem (P). For such problems, we present a branch and bound algorithm. In this method, by utilizing exponent transformation and new three-level linear relaxation method, a sequence of linear relaxation programming of the initial nonconvex programming problem (P) are derived which are embedded in a branch and bound algorithm. The proposed method need not introduce new variables and constraints and it is convergent to the global minimum of prime problem by means of the subsequent solutions of a series of linear programming problems. Several numerical examples in the literatures are tested to demonstrate that the proposed algorithm can systematically solve these examples to find the approximate ?-global optimum.  相似文献   

15.
This paper presents an efficient branch and bound algorithm for globally solving sum of geometric fractional functions under geometric constraints, which arise in various practical problems. By using an equivalent transformation and a new linear relaxation technique, a linear relaxation programming problem of the equivalent problem is obtained. The proposed algorithm is convergent to the global optimal solution by means of the subsequent solutions of a series of linear programming problems. Numerical results are reported to show the feasibility of our algorithm.  相似文献   

16.
The NP-complete problem of determining whether two disjoint point sets in then-dimensional real spaceR n can be separated by two planes is cast as a bilinear program, that is minimizing the scalar product of two linear functions on a polyhedral set. The bilinear program, which has a vertex solution, is processed by an iterative linear programming algorithm that terminates in a finite number of steps a point satisfying a necessary optimality condition or at a global minimum. Encouraging computational experience on a number of test problems is reported.This material is based on research supported by Air Force Office of Scientific Research grant AFOSR-89-0410, National Science Foundation grant CCR-9101801, and Air Force Laboratory Graduate Fellowship SSN 531-56-2969.  相似文献   

17.
指数跟踪问题的广义双线性规划模型   总被引:2,自引:0,他引:2  
本文对指数跟踪问题建立了一种广义的双线性规划模型,其中考虑了交易费用、持仓限制与重平衡问题.根据该模型的特殊结构,本文给出了近似规划算法,通过逐次逼近的线性规划求解最优指数跟踪问题.  相似文献   

18.
Extended Linear-Quadratic Programming (ELQP) problems were introduced by Rockafellar and Wets for various models in stochastic programming and multistage optimization. Several numerical methods with linear convergence rates have been developed for solving fully quadratic ELQP problems, where the primal and dual coefficient matrices are positive definite. We present a two-stage sequential quadratic programming (SQP) method for solving ELQP problems arising in stochastic programming. The first stage algorithm realizes global convergence and the second stage algorithm realizes superlinear local convergence under a condition calledB-regularity.B-regularity is milder than the fully quadratic condition; the primal coefficient matrix need not be positive definite. Numerical tests are given to demonstrate the efficiency of the algorithm. Solution properties of the ELQP problem underB-regularity are also discussed.Supported by the Australian Research Council.  相似文献   

19.
反向物流是物流研究中的一个重要分支,其相关问题是目前研究的热点问题。该研究在模糊环境中根据不同的决策标准,建立了关于反向物流问题中的回收问题的三种不同类型的模型:期望值模型,机会约束模型和相关机会模型,并设计了一个模糊模拟和遗传算法相结合的混合智能算法来解决提出的模型,最后给出了一个数值例子,结果证明了将此混合智能算法用于求解模糊反向物流网络设计模型问题的有效性。  相似文献   

20.
In this paper, we present the derivation of the multiparametric disaggregation technique (MDT) by Teles et al. (J. Glob. Optim., 2011) for solving nonconvex bilinear programs. Both upper and lower bounding formulations corresponding to mixed-integer linear programs are derived using disjunctive programming and exact linearizations, and incorporated into two global optimization algorithms that are used to solve bilinear programming problems. The relaxation derived using the MDT is shown to scale much more favorably than the relaxation that relies on piecewise McCormick envelopes, yielding smaller mixed-integer problems and faster solution times for similar optimality gaps. The proposed relaxation also compares well with general global optimization solvers on large problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号