共查询到20条相似文献,搜索用时 66 毫秒
1.
针对混沌时间序列预测模型易受异常点影响,导致模型预测精度低的问题,在贝叶斯框架下提出一种鲁棒极端学习机.所提模型将具有重尾分布特性的高斯混合分布作为模型输出似然函数,得到一种对异常点和噪声更具鲁棒性的预测模型.但由于将高斯混合分布作为模型输出似然函数后,模型输出的边缘似然函数变成难以解析处理的形式,因此引入变分方法进行近似推理,实现模型参数的估计.在加入异常点和噪声的情况下,将所提模型应用于大气环流模拟模型方程Lorenz序列以及Rossler混沌时间序列和太阳黑子混沌时间序列的预测中,预测结果验证了所提模型的有效性. 相似文献
2.
极端学习机以其快速高效和良好的泛化能力在模式识别领域得到了广泛应用,然而现有的ELM及其改进算法并没有充分考虑到数据维数对ELM分类性能和泛化能力的影响,当数据维数过高时包含的冗余属性及噪音点势必降低ELM的泛化能力,针对这一问题本文提出一种基于流形学习的极端学习机,该算法结合维数约减技术有效消除数据冗余属性及噪声对ELM分类性能的影响,为验证所提方法的有效性,实验使用普遍应用的图像数据,实验结果表明本文所提算法能够显著提高ELM的泛化性能。 相似文献
3.
开发一种基于图形处理器(GPU)加速的质子调强放疗鲁棒优化器,用于减小质子束射程不确定性和靶区定位偏差对质子放疗的影响。建立的鲁棒优化模型使用的目标函数包括9种边界剂量目标,分别是:无偏差情况、2种射程偏差(偏长与偏短)、6种摆位不确定性(前后、侧向、上下入射方向各2种正负偏差)。首先靶区和危及器官的剂量贡献矩阵使用笔形束算法计算得到,然后使用共轭梯度法优化目标函数让其满足约束条件,这两部分均采用GPU加速。头颈部、肺部和前列腺三个临床病例被用来检测本优化器的性能表现。与传统基于计划靶区(PTV)的质子调强放疗计划相比,鲁棒优化器能够优化出对射程不确定性和摆位误差更加不敏感的治疗计划,让靶区实现了高剂量均匀性的同时危及器官(OARs)也得到了更好的保护。经过100次迭代,三个病例的优化时间均在10 s左右。该结果证明了基于GPU加速的质子调强放疗鲁棒优化器能够在短时间内设计出高鲁棒性的质子治疗计划,从而提高质子放射治疗的可靠性。This paper describes the development of a fast robust optimization tool that takes advantage of the GPU technologies. The objective function of the robust optimization model considered nine boundary dose distributions--two for ±range uncertainties, six for ±set-up uncertainties along anteroposterior (A-P), lateral (R-L) and superior{inferior (S-I) directions, and one for nominal situation. The nine boundary influence matrices were calculated using an in-house dose engine for proton pencil beams of a finite size, while the conjugate gradient method was applied to minimize the objective function. The GPU platform was adopted to accelerate both the proton dose calculation algorithm and the conjugate gradient method. Three clinical cases-one head and neck cancer case, one lung cancer case and one prostate cancer case-were investigated to demonstrate the clinical significance of the proposed robust optimizer. Compared with conventional planning target volume (PTV) based IMPT plans, the proposed method was found to be conducive in designing robust treatment plans that were less sensitive to range and setup uncertainties. The three cases showed that targets could achieve high dose uniformity while organs at risks (OARs) were under better protection against setup and range errors. The run times for the three cases were around 10 s for 100 iterations. The GPU-based fast robust optimizer developed in this study can serve to improve the reliability of traditional proton treatment planning by achieving a high level of robustness in a much shorter time. 相似文献
4.
针对多变量混沌时间序列预测问题, 提出了一种基于输入变量选择和极端学习机的预测模型. 其基本思想是 对多变量混沌时间序列进行相空间重构后, 采用互信息方法选择与预测输出统计相关最高的重构输入变量, 借助极端学习机的通用逼近能力建立多变量混沌时间序列的预测模型. 为进一步提高预测精度, 采用模型选择算法选择具有最小期望风险的极端学习机预测模型. 基于Lorenz, Rössler多变量混沌时间序列及Rössler超混沌时间序列的仿 真结果证明所提方法的有效性. 相似文献
5.
针对回声状态网络模型易受异常点影响的问题, 提出一种基于拉普拉斯先验分布的鲁棒回声状态网络模型. 通过采用对异常点不敏感的拉普拉斯分布代替高斯分布作为模型输出的先验, 以增强网络对于异常点的抑制能力. 此外, 为解决由引入拉普拉斯分布所造成的求解困难的问题, 根据边际优化方法, 构建适当的替代函数, 使拉普拉斯先验等价转化为易于计算的高斯形式, 并通过贝叶斯方法实现模型参数的自适应估计. 仿真结果表明, 在异常点存在的情况下, 本文所提出的模型具有较好的鲁棒性, 并仍能保持较高的预测精度.
关键词:
回声状态网络
鲁棒模型
替代函数
拉普拉斯分布 相似文献
6.
振动噪声的有效隔离是冷原子重力仪的关键技术之一.为了减小冷原子重力仪中拉曼反射镜的振动噪声,研制了一套紧凑型低频主动隔振系统.其原理是利用滑模鲁棒控制系统处理和反馈由地震仪采集到的振动信号,利用音圈电机控制和消除被动隔振平台的运动.在0.1—10 Hz频域范围内,滑模鲁棒控制系统的残余振动噪声功率谱密度比被动隔振平台最大降低了99.9%,比超前滞后补偿控制方法最大降低了83.3%.滑模鲁棒控制算法还具有整定参数少、抗干扰能力强等特点. 相似文献
7.
为减小测量异常误差对非线性目标跟踪系统的影响, 提出了一种基于广义M估计的鲁棒容积卡尔曼滤波算法. 首先将非线性测量方程等价变换, 利用约束总体最小二乘准则构建广义M估计极值函数, 在不进行线性化近似的前提下将其引入到容积卡尔曼滤波求解框架中. 然后根据Mahalanobis距离构建异常误差判别量, 利用卡方分布的置信水平确定判决门限, 并建立改进的三段Huber权函数, 使其能够降低小异常误差权值, 剔除大异常误差. 理论分析表明, 该方法具有无需求导、跟踪精度高、实时性好等优点, 且无需已知异常误差的统计特性; 实验结果表明, 所提算法能够有效减小异常误差的影响, 在实际非线性物理系统中具有广阔的应用空间. 相似文献
8.
针对正则化极端学习机的隐层具有随机选择的特性,提出了一种增加删除机制来自适应地确定正则化极端学习机的隐层节点数. 这种机制以对优化目标函数影响的大小作为评价隐层节点优劣的标准,从而淘汰那些比较“差”的节点,将那些比较“优”的节点保留下来,起到一个优化正则化极端学习机隐层节点数的目的. 与已有的只具有增加隐层节点数的机制相比较,本文提出的增加删除机制在减少正则化极端学习机隐层节点数、增强其泛化性能、提高其实时性等方面具有一定的优势. 典型混沌时间序列的实例证明了具有增加删除机制的正则化极端学习机的有效性和可行性.
关键词:
混沌时间序列
人工神经网络
极端学习机 相似文献
9.
提出基于混合束模型的相对生物学效应(RBE)加权剂量鲁棒优化方法,用于减少碳离子束射程和摆位偏差对生物剂量分布的影响。建立概率组合鲁棒优化模型,利用二次型目标函数表达式,分别制定针对物理吸收剂量和RBE加权剂量的碳离子束治疗计划,并基于共轭梯度优化算法求解出各自最优的权重解,使得靶区和危及器官(OAR)实际剂量分布在射程和摆位偏差组合情况下尽量满足剂量要求。采用C型靶模型测试鲁棒优化方法的有效性。与基于计划靶区(PTV)的常规优化方法相比,针对物理吸收剂量的鲁棒优化计划临床靶区(CTV)的$ \Delta {D}_{95{\text{%}} } $ 减少10.00 cGy,OAR的$ \Delta {D}_{5{\text{%}} } $ 和$ \Delta {D}_{\mathrm{m}\mathrm{a}\mathrm{x}} $ 分别减少21.50和35.97 cGy,计划的鲁棒性得到了很好的提升。针对RBE加权剂量的鲁棒优化计划CTV的$ \Delta {D}_{95{\text{%}} } $ 降低14.00 cGy(RBE),OAR的$ \Delta {D}_{5{\text{%}} } $ 和$ \Delta {D}_{\mathrm{m}\mathrm{a}\mathrm{x}} $ 分别减少19.00和26.28 cGy(RBE),说明该方法不仅减少了CTV的生物剂量变化,也减少了OAR的生物剂量热点。该结果证明了基于混合束模型的RBE加权剂量鲁棒优化方法在有效提高碳离子放疗计划鲁棒性的同时使OAR也得到了很好的保护。 相似文献
10.
随着我国现代化进程的不断加快,航天航空技术标准越来越高,对于航空发动机运转工况的鲁棒性和适应性提出了更高的要求。传统的航空发动机变增益设计步骤繁琐,不能将发动机置于整个航空器的运转去考虑设计,使发动机变增益缺乏相应的稳定性和适应性,易出现系统问题。为此,提出一般基于LPV的航空发动机鲁棒变增益控制系统,依据航空发动机结构参数,考虑到航空器在空中负载特性,计算出新的约束极点 模糊变增益,在航空器发动机工作范围连续增益,避免了传统增益切换情况,在转速控制上确定误差等因素,将非线性控制设计分解为多个线性子问题,使航空器控制系统能够沿着LPV参数轨迹保持良好的运转,保持稳定性能。仿真实验证明,提出的基于LPV的航空发动机鲁棒变增益控制系统控制效果优于传统方法,在航空器发动机转速改变时,控制精度能够满足要求 ,改变航空器负载时,有效对目标进行变增益控制。提出的控制方法对航空发动机鲁棒变增益控制问题提供了新的解决办法,具有较大应用价值。 相似文献
11.
基于变量优选和ELM算法的土壤含水量预测研究 总被引:5,自引:0,他引:5
土壤水分含量(SMC)的快速估测对干旱半干旱地区的精准农业发展具有重要的意义。以渭干河-库车河绿洲为靶区,采用小波变换(WT)对反射光谱进行1~8层小波分解,通过相关性分析确定最大分解层数,再通过竞争性自适应重加权(CRAS)、连续投影算法(SPA)和CARS-SPA耦合算法进行特征波长筛选。基于全波段构建BP神经网络模型和基于特征波长构建BP神经网络、支持向量机、随机森林和极限学习机模型,并进行对比分析。结果显示: (1)随着小波分解的进行,总体上L6在去噪的同时还尽可能的保留了光谱原始特征,为最大分解层;(2)小波变换和CARS-SPA算法的结合使其在建立模型时较为彻底的去除噪声和无信息变量,同时消除变量间的共线性; (3)在所有的SMC预测模型中,相对于BP神经网络、SVM,ELM和RF具有更好的预测能力,其中L6-CARS-SPA-ELM精度最高,其RMSEC=0.015 1,R2c=0.916 6,RMSEP=0.014 2,R2p=0.935 4,RPD=2.323 9。这体现出ELM预测模型对非线性问题的强解析能力和模型的稳健性,为该研究区SMC的预测提供新的思路。 相似文献
12.
The trend prediction of the stock is a main challenge. Accidental factors often lead to short-term sharp fluctuations in stock markets, deviating from the original normal trend. The short-term fluctuation of stock price has high noise, which is not conducive to the prediction of stock trends. Therefore, we used discrete wavelet transform (DWT)-based denoising to denoise stock data. Denoising the stock data assisted us to eliminate the influences of short-term random events on the continuous trend of the stock. The denoised data showed more stable trend characteristics and smoothness. Extreme learning machine (ELM) is one of the effective training algorithms for fully connected single-hidden-layer feedforward neural networks (SLFNs), which possesses the advantages of fast convergence, unique results, and it does not converge to a local minimum. Therefore, this paper proposed a combination of ELM- and DWT-based denoising to predict the trend of stocks. The proposed method was used to predict the trend of 400 stocks in China. The prediction results of the proposed method are a good proof of the efficacy of DWT-based denoising for stock trends, and showed an excellent performance compared to 12 machine learning algorithms (e.g., recurrent neural network (RNN) and long short-term memory (LSTM)). 相似文献
13.
近红外光谱药品鉴别作为识别假冒伪劣药品的一种有效技术手段,已被广泛应用到各大医疗行业和药品监督管理机构,并结合模式识别建模方法在基层药品打假中得到较好的推广。由于传统建模方法很难满足药品鉴别中大规模、多分类、快速建模等问题,因此采用一种基于波形叠加极限学习机(SWELM(CS))分类方法对光谱数据进行鉴别。通过选用极限学习机(ELM)作为光谱药品分类器,使得分类模型具有快速学习能力以及对训练样本不敏感的特点;由于极限学习机的连接权值和隐层神经元阈值是随机生成导致网络稳定性差,因此结合布谷鸟搜索算法优化分类模型参数;采用反双曲线正弦函数与Morlet小波函数叠加的激励函数代替ELM原有的单一激励函数改善了分类模型的收敛速度和稳健性。通过上述改进方法使得SWELM(CS)具有对训练样本不敏感性,布谷鸟参数优化的分类稳定性、波形叠加函数的强收敛性与信号特征提取能力。该方法为核函数提供的信号特征提取及拟合的思想,可推广到其他学习算法中以获取更高的分类准确度及稳定性。该实验选定西安杨森制药厂生产的249个近红外光谱药品样本作为研究的主要对象,重点研究光谱药品的二分类和多分类实验,实验证明SWELM(CS)分类器相比BP神经网络、标准ELM以及粒子群优化ELM等传统分类器算法具有更高的分类准确度、分类稳定性及更小的训练样本敏感性。 相似文献
14.
随着各国航天活动的增多,空间目标的数量和种类不断增加,对空间目标进行编目识别是各国空间目标监视领域的重要研究内容。对空间目标进行识别,主要是为了获得其表面材质、姿态、形状、关键载荷等信息,而表面材质信息的获取是开展目标光学特性及状态认知研究的基础。搭建空间目标表面材质多色测光测量系统,整套系统部署在光学暗室内,以减少杂散光对测量结果的影响。光源采用太阳模拟器,光谱等级A级;探测器采用美国ASD公司生产的FieldSpec4地物光谱仪,波长范围350~2 500 nm,光谱分辨率1 nm,光纤置于电控转台上,能对待测样片实现不同观测几何下的测量。利用Johnson-Cousins UBVRI五色分光系统对8种常用表面材质(砷化镓、氧化铝、氧化聚酰亚胺薄膜、黑漆、环氧漆、镀铝聚酰亚胺薄膜、钛青蓝漆、白漆)在不同观测几何条件下的10种色指数数据进行实验测量,每种色指数分别测得30组实验数据。采用传统的1-sigma不确定框方法(即对于给定材质的若干组实验数据,计算其每种色指数的平均值和标准差,以平均值为中心,以标准差的两倍为边长画出色指数不确定框),在最理想的识别情况下,通过R-I和B-R色指数不确定框能对砷化镓、氧化铝、氧化聚酰亚胺薄膜、钛青蓝漆四种材质进行识别;利用B-V和B-R色指数不确定框可以将环氧漆、白漆识别出来,剩余两种材质黑漆和镀铝聚酰亚胺薄膜无法通过以上色指数进行识别。但是1-sigma不确定框方法存在两个主要问题:一是需要知道待测材质对特定波段敏感的先验信息,来确定所用的色指数类型;二是识别率容易受测试样本数量的影响,可靠性差。超限学习机算法是一种利用随机化隐层节点和和最小二乘求解方式进行训练的机器学习算法,具备学习效率快,泛化性能好,不容易陷入局部最优解等优势,被广泛应用于对数据的分类和回归分析中。因此引入超限学习机算法,将色指数数据按照2∶1的比例随机分为训练样本和测试样本,共进行三次随机试验。在训练样本中,对每种材质按照1∶8的顺序进行编号,即编号1∶8的测试样本分别有20个,分别包含10种色指数数据;在测试样本中同样对其按照已知归属材质对应编号。采用决定系数和计算时间作为判断ELM算法准确性和实时性的判断指标。结果表明:无论是对单一材质进行识别,还是对所有测试材质样本,训练样本决定系数在0.98以上,测试样本决定系数在0.96以上,每次试验中最多有3组色指数数据无法识别;所需总时间最长在0.07 s内完成,甚至可以达到0.002 s,识别效率和可靠性远高于传统的1-sigma不确定框法,表明ELM算法能对空间目标常用材质进行准确快速识别。相关研究可为空间非合作目标的外形、姿态等状态信息反演提供技术支持。 相似文献
15.
变量选择是光谱分析领域一个重要的组成部分。为了克服传统区间选择法的缺点与不足,基于无信息变量消除法和岭极限学习机提出一种新型的变量选择与评价方法。首先,利用无信息变量消除法剔除整个光谱区间中无信息的波长点;其次,为了解决传统建模方法(偏最小二乘法、BP神经网络等)存在的共线性问题,采用岭极限学习机方法建立回归模型;最后,最佳的特征光谱波长点组合利用特征选择路径图和稀疏度-误差折中曲线进行确定。CO气体的浓度反演实验结果表明:(1)利用无信息变量消除法可以有效筛选出最能表征CO气体透过光谱的特征波长点;(2)岭极限学习机方法具有快速建模、避免共线性和高精度等优点(CO气体浓度反演模型的决定系数可达0.995);(3)特征选择路径图和稀疏度-误差折中曲线可以直观地帮助用户寻找出最佳的特征波长点组合。 相似文献
16.
区间极限学习机结合遗传算法用于红外光谱气体浓度反演的研究 总被引:1,自引:0,他引:1
提出一种新的有效的FTIR光谱气体浓度反演的方法。 该方法将区间划分的思想用于红外光谱波长优化筛选,即将红外光谱在给定波长范围内划分为若干个子区间,在每个子区间中利用遗传算法(genetic algorithm, GA)优化后的极限学习机(extreme learning machine,ELM)建立浓度预测模型,根据每个子区间测试集均方根误差RMSE和相关系数R2的大小评价模型的泛化性能,筛选出最优子区间组合建立预测模型。 通过含干扰组分(CO2,N2O)的CO气体的 FTIR光谱对提出的算法进行了验证,在波段为2 140~2 220 cm-1范围内利用区间法筛选出的最优组合作为变量,应用GA-ELM建立的浓度反演模型,其决定系数R2为0.987 4,均方根误差RMSE为154.996 3,建模时间仅为0.8 s,表明该算法(Interval-GA-ELM, iGELM)的应用不仅缩短了建模时间,而且在干扰组分存在的情况下,依然可以准确筛选出特征波长,从而提高了模型稳定性和预测精度,为大气污染气体遥测分析提供了行之有效的方法。 相似文献
17.
This paper features the study of global optimization problems and numerical methods of their solution. Such problems are computationally expensive since the objective function can be multi-extremal, nondifferentiable, and, as a rule, given in the form of a “black box”. This study used a deterministic algorithm for finding the global extremum. This algorithm is based neither on the concept of multistart, nor nature-inspired algorithms. The article provides computational rules of the one-dimensional algorithm and the nested optimization scheme which could be applied for solving multidimensional problems. Please note that the solution complexity of global optimization problems essentially depends on the presence of multiple local extrema. In this paper, we apply machine learning methods to identify regions of attraction of local minima. The use of local optimization algorithms in the selected regions can significantly accelerate the convergence of global search as it could reduce the number of search trials in the vicinity of local minima. The results of computational experiments carried out on several hundred global optimization problems of different dimensionalities presented in the paper confirm the effect of accelerated convergence (in terms of the number of search trials required to solve a problem with a given accuracy). 相似文献
18.
发动机是飞行器动力系统的核心组件,发动机流场的动态监测可以掌握发动机内部流场的燃烧情况,对于飞行器状态监测和性能评估具有重要意义.拥有先进的诊断技术是发展发动机技术的基础,也是研制新型航空航天飞行器的必要条件之一.激光吸收光谱技术可以实现燃烧场气体参数的测量,在发动机严苛的流场环境中,吸收光谱波长调制技术(WMS)可以... 相似文献
19.
Vehicles generate dissimilar sound patterns under different working
environments. These generated sound patterns signify the condition of the
engines, which in turn is used for diagnosing various faults. In this paper, the
sound signals produced by motorcycles are analyzed to locate various faults.
The important attributes are extracted from the generated sound signals based
on time, frequency and wavelet domains which clearly describe the statistical
behavior of the signals. Further, various types of faults are classified using the
Extreme Learning Machine (ELM) classifier from the extracted features. Moreover,
the improved classification performance is obtained by the combination of
feature sets in different domains. The simulation results clearly demonstrate that
the proposed hybrid feature set together with the ELM classifier gives more promising
results with higher classification accuracy when compared with the other
conventional methods. 相似文献
20.
非相干宽带腔增强吸收光谱技术(IBBCEAS)利用高精密谐振腔增强吸收光程,实现对痕量气体的高灵敏探测.目前,IBBCEAS技术主要采用发光二极管(LED)作为非相干光源.当谐振腔镜片反射率曲线与带宽有限的L ED辐射谱不能很好匹配时,光谱反演波段选择不当可能会对被测气体浓度拟合结果产生较大偏差.以定量探测大气NO2浓... 相似文献