首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a novel scheme to form a 1D optical molasses by using two counter-propagating red-detuned elliptical Gaussian beams possessing an ultrahigh orbital angular-momentum. In this optical molasses, atoms will suffer both an axial and an azimuthal Doppler cooling, and their temperature can be far below the conventional Doppler cooling limit, which provides a new opportunity for the laser cooling of the most abundant bosonic isotopes of alkaline-earth atoms. Because these atoms lack the hyperfine structure, they cannot be cooled by the well-known sub-Doppler cooling schemes.  相似文献   

2.
We propose a novel scheme to form a 2D dark optical surface lattice (DOSL) for cold atoms on the surface of the dense flint glass by using two sets of blue-detuned evanescent wave interference fields and a blue-detuned evanescent wave field. In the 2D DOSL, cold atoms will be trapped in the vicinity of minimum intensity and suffered the minimal light shift as well as the lowest coherence loss. The total potential and trap-depth of the individual optical micro-trap in the 2D DOSL are high enough to trap cold atoms (T = 120 μK) released from the standard magneto-optical trap (MOT), and atoms trapped in the 2D DOSL can be cooled to several μK with the efficient intensity-gradient Sisyphus cooling. The lattice constant of the DOSL can be controllable by changing the incident angles of lights.  相似文献   

3.
Three-dimensional SiO2 photonic crystals (PhCs) are fabricated on quartz substrates by the vertical deposition method. Scanning electron microscopy measurement reveals that the samples exhibit an ordered close-packed arrangement of SiO2 spheres. It is found that the position of the [111] photonie band gap (PBG) shifts to a long wavelength (red shift) with increasing sphere size. Gap broadening effects are observed due to the presence of defects in the samples. Moreover, the optical properties of the PBG are very sensitive to the annealing temperature. Our results indicate that the optical properties of the PBG can be easily tuned in the visible region by appropriate experimental parameters, which will be useful for practical applications of PhC optical devices.  相似文献   

4.
This paper reports an experimental study on the collimation and decollimation of an atomic beam in a misaligned standing wave, in which the effective detuning caused by the Doppler effect is affected by the longitudinal velocity of the atomic beam. The experiment shows that in a strong field with red detuning between laser field and atomic transition frequency, laser heating in a normal standing wave becomes laser cooling in a misaligned standing wave for an approriate misalignment angle. For blue detuning, laser cooling in a standing wave can also become laser heating in a misaligned standing wave for an appropriate condition. These results ca be used in controling atomic motion.  相似文献   

5.
One-dimensional deposition of a neutral chromium atomic beam focused by a near-resonant Gaussian standing- laser field is discussed by using a fourth-order Runge-Kutta type algorithm. The deposition pattern of neutral chromium atoms in a laser standing wave with different laser power is discussed and the simulation result shows that the full width at half maximum (FWHM) of a nanometer stripe is 115nm and the contrast is 2.5:1 with laser power 3.93mW; the FWHM is 0.8nm and the contrast is 27:1 with laser power 16mW, the optimal laser power; but with laser power increasing to 50mW, the nanometer structure forms multi-crests and the quality worsens quickly with increasing laser power.  相似文献   

6.
Based on the semi-classical model, we analyse the motion equation of chromium atoms in the laser standing wave field under the condition of low intensity light field using fourth-order Adams-Moulton algorithm. The trajectory of the atoms is obtained in the standing wave field by analytical simulation. The image distortion coming from aberrations is analysed and the effects on focal beam features are also discussed. Besides these influences, we also discuss the effects on contrast as well as the feature width of the atomic beam due to laser power and laser beam waist. The simulation results have shown that source imperfection, especially the transverse velocity spread, plays a critical role in broadening the feature width. Based on these analyse, we present some suggestions to minimize these influences.  相似文献   

7.
Two-dimensional laser cooling based on velocity-selective coherent population trapping is investigated theoretically for the J g=1J e=0 atomic transition. Wavevectors and polarizations of three laser beams are chosen to realize a coherent superposition of three degenerate ground states. For the first time in laser cooling, use is made of the electric field phases to realize coherent population trapping selective in two dimensions. Numerical solutions and analytic estimates are presented for laser cooling of helium atoms.  相似文献   

8.
High-quality three-dimensional polystyrene opal photonic crystals are fabricated by vertical deposition method. The transmission properties with different incident angles and different composite refractive index contrasts are experimentally and theoretically studied. Good agreement between the experiment and theory is achieved. We find that with the increasing incident angle, the gap position shifts to the short wavelength (blue shift) and the gap becomes shallower; and with the increase of refractive index of the opal void materials and decrease the contrast of refractive index, the gap position shifts to the long wavelength (red shift). At the same time, we observe the swelling effects when the sample is immerged in the solutions with different refractive indices, which make the microsphere diameter in solution become larger than that in air. The understanding of band gap shift behaviour may be helpful in designing optical sensors and tunable photonic crystal ultrafast optical switches.  相似文献   

9.
We present a theoretical study of the localization1 of atoms with an angular momentumJ g=3 toJ e=4 transition (e.g., chromium atoms) in quantized optical molasses created by two counterpropagating linearly polarized laser beams. We study the localization as a function of the potential depth, the angle between the polarizations and the interaction time with the molasses in the low-intensity limit, and discuss the possibility of adiabatic compression and squeezing of the atomic distribution.Dedicated to H. Walther on the occasion of his 60th birthday  相似文献   

10.
Writing a superlattice with light forces   总被引:1,自引:0,他引:1  
In atom lithography the conventional roles played by light and matter are reversed. Instead of using a solid mask to pattern a light beam, a mask of light is used to pattern a beam of neutral atoms. In this paper we report the production of different chromium dot arrays with quadratic symmetry. The lattice period depends on the relative polarization and the phase of the two standing waves generating the light mask. A small angular misalignment of the laser beams breaks the high symmetry and a chromium superlattice is written, that is a continuous periodic change between two different quadratic lattices. The structures exhibit lines with a FWHM below 50 nm and clearly separated chromium dots with a FWHM below 70 nm. Received: 30 September 1999 / Revised version: 14 February 2000 / Published online: 5 April 2000  相似文献   

11.
We report results of the first laser collimation of a thermal beam of Fe atoms on the leaky 5D4 5F5 transition, with both parallel linear xx and crossed linear xy laser polarization configurations. The measured atomic beam divergence is compared to a rate-equation model and a quantum Monte Carlo model. The experimental values for the divergence are limited by the finite laser line width, which is comparable to the natural line width of the Fe atom. In general, flux decreases with higher intensities, showing the effect of the leaky transition. At the best beam collimation RMS = 0.17 mrad, which is for a detuning of = – and a saturation parameter of s = 6, the flux decreased to approximately 70%. Highest flux was measured for a detuning of = –2 and s = 4, reaching 135% of the uncooled value. From our measurements we estimate the total leak rate to be 1/(240 ± 40), which is in good agreement with the literature value of 1/244. The crossed linear polarization configuration is the better choice, with a slightly better collimation but the same atomic beam flux. Plugging of the largest leak would increase the flux to at least 80% of the closed transition value, resulting in better contrast for atom lithography.  相似文献   

12.
纪宪明  印建平 《中国物理快报》2004,21(12):2399-2402
We propose a novel scheme to form one- and two-dimensional arrays of double-well optical dipole traps for cold atoms (or molecules) by using an optical system composed of a binary π-phase grating and a lens illuminated by a plane light wave, and study the relationship between the maximum intensity Imax of each optical well (or the maximum trapping potential Umax for ^85Rb atoms) and the relative aperture β (= α/f) of the lens. We also calculate the intensity gradients of each optical well and their curvatures, and estimate the spontaneous photon-scattering rate of trapped atom in each well, including Rayleigh and Raman scattering rates. Our study shows that the proposed 1D and 2D arrays of double-well traps can be used to prepare 1D and 2D novel optical lattices with cold atoms (or molecules), or form an all-optically integrated atom optical chip, or even to realize an array of all-optical double-well atomic (or molecular) Bose-Einstein condensates by optical-potential evaporative cooling, and so on.  相似文献   

13.
We have operated a magneto-optical trap and optical molasses for the laser cooling of cesium atoms on the basis of a five-beam laser configuration. For the magneto-optical trap two laser beams counterpropagate along the axis of a quadrupole trap and the remaining three beams propagate in the orthogonal plane at 120° to each other. The same optical configuration was used for the optical molasses. We have tested the efficiency in atom collection and the temperatures reached in both cooling processes. In comparison to previous results on a six-beam configuration, a lower number of atoms is collected, while comparable densities are realized. The atomic temperatures have been measured through a delayed shadow-image technique, where one of the running-wave cooling beams produces an absorptive image of the atoms on a camera. Received: 14 January 1999 / revised version: 23 June 1999 / Published online: 8 September 1999  相似文献   

14.
Laser cooling in a CO2-laser optical lattice   总被引:1,自引:0,他引:1  
Received: 19 June 1998  相似文献   

15.
A two-dimensional photonic crystal model with a periodic square dielectric background is proposed. The photonic band modulation effects due to the two-dimensional periodic background are investigated in detail. It is found that periodic modulation of the dielectric background greatly alters photonic band structures, especially for the Epolarization modes. The number, width and position of the photonic band gaps sensitively depend on the dielectric constants of the two-dimensional periodic background. Complete band gaps are found, and the dependence of the widths of these gaps on the structural and material parameters of the two alternating rods/holes is studied.  相似文献   

16.
The mechanism responsible for transitions of laser-cooled trapped ions from an ordered crystal state to an irregular cloud state has been discussed controversially. A numeric and analytic study of the relative motion of two trapped ions without laser cooling is performed and compared with the results of previous simulations involving the laser. It turns out that the system without laser, in spite of its simplicity, already exhibits a non-monotonic dependence of crystal stability on trap parameters, which is linked to the presence of low-order nonlinear resonances.  相似文献   

17.
18.
The laser cooling of atoms is a result of the combined effect of Doppler shift, light shift and polarization gradient. These are the phenomena which generally introduce frequency shift and uncertainty. However, they combine gainfully in realizing laser cooling and trapping of the atoms. In this paper we discuss the laser cooling of atoms in the presence of the squeezed light with the decay of atomic dipole moment into noisy quadrature. We show that the higher decay rate of the atomic dipole moment into the noisy quadrature, which leads to decrease in the signal to noise ratio, may contribute in realizing larger cooling force vis-à-vis with coherent laser light.  相似文献   

19.
We report on high-resolution spectroscopy with two different samples of calcium atoms, in a laser-cooled and deflected beam and in a magneto-optical trap. The atomic beam was excited by spatially separated laser fields. For spectroscopy with stored atoms in a magneto-optical trap we used a multiple-pulse excitation scheme. The resolution as low as 2.5 kHz was limited by residual frequency fluctuations of our dye-laser spectrometer. The results should allow to establish a frequency standard with a relative uncertainty below 10–14.  相似文献   

20.
An air waveguide in hybrid one-dimensional photonic crystal and two-dimensional photonic crystal slab hetero-structure is designed. Light propagating in air waveguide can be confined by two-dimensional photonic crystal slab in x-y plane and one-dimensional photonic crystal films in z direction. Theoretical calculations show that air waveguide in the hetero-structure can achieve some functions as 3D PhCs but could be made more easily than 3D PhCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号