首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using Brownian hydrodynamic simulation techniques, we study single polymers in shear. We investigate the effects of hydrodynamic interactions, excluded volume, chain extensibility, chain length and semiflexibility. The well-known stretching behavior with increasing shear rate [(g)\dot] \dot{{\gamma}} is only observed for low shear [(g)\dot] \dot{{\gamma}} < [(g)\dot]max \dot{{\gamma}}^{{\max}}_{} , where [(g)\dot]max \dot{{\gamma}}^{{\max}}_{} is the shear rate at maximum polymer extension. For intermediate shear rates [(g)\dot]max \dot{{\gamma}}^{{\max}}_{} < [(g)\dot] \dot{{\gamma}} < [(g)\dot]min \dot{{\gamma}}^{{\min}}_{} the radius of gyration decreases with increasing shear with minimum chain extension at [(g)\dot]min \dot{{\gamma}}^{{\min}}_{} . For even higher shear [(g)\dot]min \dot{{\gamma}}^{{\min}}_{} < [(g)\dot] \dot{{\gamma}} the chain exhibits again shear stretching. This non-monotonic stretching behavior is obtained in the presence of excluded-volume and hydrodynamic interactions for sufficiently long and inextensible flexible polymers, while it is completely absent for Gaussian extensible chains. We establish the heuristic scaling laws [(g)\dot]max \dot{{\gamma}}^{{\max}}_{} ∼ N -1.4 and [(g)\dot]min \dot{{\gamma}}^{{\min}}_{} ∼ N 0.7 as a function of chain length N , which implies that the regime of shear-induced chain compression widens with increasing chain length. These scaling laws also imply that the chain response at high shear rates is not a universal function of the Weissenberg number Wi = [(g)\dot] \dot{{\gamma}} t \tau anymore, where t \tau is the equilibrium relaxation time. For semiflexible polymers a similar non-monotonic stretching response is obtained. By extrapolating the simulation results to lengths corresponding to experimentally studied DNA molecules, we find that the shear rate [(g)\dot]max \dot{{\gamma}}^{{\max}}_{} to reach the compression regime is experimentally realizable.  相似文献   

2.
The equation of state of symmetric nuclear matter is calculated using the relativistic Hamiltonian (HR) with potentials which have been fitted with the N -N scattering data using the relativistic two-body Hamiltonian ( [(v)\tilde]14 \tilde{{v}}_{{14}}^{} and the non-relativistic two-body Hamiltonian, i.e. the Argonne V14 interaction. The boost interaction corrections as well as the relativistic one-body and two-body kinetic energy corrections in cluster expansion energy within the lowest-order-constrained variational method are calculated. It is shown that the relativistic corrections reduce the binding energy by 1.5MeV for [(v)\tilde]14 \tilde{{v}}_{{14}}^{} and AV14 interactions. The symmetric nuclear-matter saturation energy is about -16.43 MeV at r \rho = 0.253 (fm-3) with [(v)\tilde]14 \tilde{{v}}_{{14}}^{} interaction plus relativistic corrections. Finally, various properties of the symmetric nuclear matter are given and a comparison is made with the other many-body calculations.  相似文献   

3.
In this article, we study the mass spectrum of the baryon-antibaryon bound states p [`(p)] \bar{{p}} , S \Sigma [`(S)] \bar{{\Sigma}} , X \Xi [`(X)] \bar{{\Xi}} , L \Lambda [`(L)] \bar{{\Lambda}} , p [`(N)] \bar{{N}}(1440) , S \Sigma [`(S)] \bar{{\Sigma}}(1660) , X \Xi [`(X)] \bar{{\Xi}}^{{\prime}}_{} and L \Lambda [`(L)] \bar{{\Lambda}}(1600) with the Bethe-Salpeter equation. The numerical results indicate that the p [`(p)] \bar{{p}} , S \Sigma [`(S)] \bar{{\Sigma}} , X \Xi [`(X)] \bar{{\Xi}} , p [`(N)] \bar{{N}}(1440) , S \Sigma [`(S)] \bar{{\Sigma}}(1660) , X \Xi [`(X)] \bar{{\Xi}}^{{\prime}}_{} bound states maybe exist, and the new resonances X(1835) and X(2370) can be tentatively identified as the p [`(p)] \bar{{p}} and p [`(N)] \bar{{N}}(1440) (or N(1400)[`(p)] \bar{{p}} bound states, respectively, with some gluon constituents, and the new resonance X(2120) may be a pseudoscalar glueball. On the other hand, the Regge trajectory favors identifying the X(1835) , X(2120) and X(2370) as the excited h \eta^{{\prime}}_{}(958) mesons with the radial quantum numbers n = 3 , 4 and 5, respectively.  相似文献   

4.
Analytical and numerical calculations show that a putative temporal variation of the speed of light c, with the meaning of space-time structure constant c ST, assumed to be linear over timescales of about one century, would induce a secular precession of the longitude of the pericenter v{\varpi} of a test particle orbiting a spherically symmetric body. By comparing such a predicted effect to the corrections D[(v)\dot]{\Delta\dot\varpi} to the usual Newtonian/Einsteinian perihelion precessions of the inner planets of the Solar System, recently estimated by E.V. Pitjeva by fitting about one century of modern astronomical observations with the standard classical/relativistic dynamical force models of the EPM epehemerides, we obtained [(c)\dot]/c = (0.5±2)×10-7 yr-1{\dot c/c =(0.5\pm 2)\times 10^{-7} {\rm yr}^{-1}} . Moreover, the possibility that [(c)\dot]/c 1 0{\dot c/c\neq 0} over the last century is ruled out at 3−12σ level by taking the ratios of the perihelia for different pairs of planets. Our results are independent of any measurement of the variations of other fundamental constants which may be explained by a variation of c itself (with the meaning of electromagnetic constant c EM). It will be important to repeat such tests if and when other teams of astronomers will estimate their own corrections to the standard Newtonian/Einsteinian planetary perihelion precessions with different ephemerides.  相似文献   

5.
By introducing the mixing of scalar mesons in the chiral SU(3) quark model, we dynamically investigate the baryon-baryon interaction. The hyperon-nucleon and nucleon-nucleon interactions are studied by solving the resonating group method (RGM) equation in a coupled-channel calculation. In our present work, the experimental lightest pseudoscalar p \pi, K,h \eta,h \eta^{{\prime}}_{} mesons correspond exactly to the chiral nonet pseudoscalar fields p \pi, K,h \eta,h \eta^{{\prime}}_{} in the chiral SU(3) quark model. The h \eta,h \eta^{{\prime}}_{} mesons are considered as the mixing of singlet and octet mesons, and the mixing angle qps \theta_{{ps}}^{} is taken to be -23° . For scalar nonet mesons, we suppose that there exists a correspondence between the experimental lightest scalar f 0(600) , k \kappa , a 0(980) , f 0(980) mesons and the theoretical scalar nonet s \sigma , k \kappa , s \sigma^{{\prime}}_{} , e \epsilon fields in the chiral SU(3) quark model. For scalar mesons, we consider two different mixing cases: one is the ideal mixing and another is the qs \theta_{s}^{} = 19° mixing. The masses of the s \sigma^{{\prime}}_{} and e \epsilon mesons are taken to be 980MeV, which are just the masses of the experimental a 0(980) , f 0(980) mesons. The mass of the s \sigma meson is an adjustable parameter and is decided by fitting the binding energy of the deuteron, the masses of 560MeV and 644MeV are obtained for the ideal mixing and the qs \theta_{s}^{} = 19° mixing, respectively. We find that, in order to reasonably describe the YN interactions, the mass of the k \kappa meson is near 780MeV for the ideal mixing. However, we must enhance the mass of the k \kappa meson for the qs \theta_{s}^{} = 19° mixing, the 1050MeV is favorably used in the present work. The experimental s \sigma and k \kappa scalar mesons are very strange, both have larger widths. Hence, no matter what kind of mixing is considered, all the masses of scalar mesons we used in the present work seem to be consistent with the present PDG information.  相似文献   

6.
The properties of asymmetric nuclear matter for a wide range of densities and asymmetric parameters are investigated within the lowest-order-constrained variational (LOCV) method by employing the relativistic Hamiltonian with a potential which has been fitted relativistically to N-N phase shifts ( [(v)\tilde]14 \tilde{{v}}_{{14}}^{} and to the AV14interaction. Like our previous work on symmetric nuclear matter, the boost interaction corrections as well as the relativistic one-body and two-body kinetic corrections are calculated. The various properties of asymmetric nuclear matter such as the symmetry energy, the saturation energy and the validity of the a2 \alpha^{2}_{} law, etc., are examined. The symmetry energy is reduced by about 7MeV when we use [(v)\tilde]14 \tilde{{v}}_{{14}}^{} instead of its non-relativistic version, i.e. the AV14interaction. The results are compared with other many-body calculations.  相似文献   

7.
We study the conformational dynamics within homopolymer globules by solvent-implicit Brownian dynamics simulations. A strong dependence of the internal chain dynamics on the Lennard-Jones cohesion strength e \varepsilon and the globule size N G is observed. We find two distinct dynamical regimes: a liquid-like regime (for e \varepsilon < es \varepsilon_{{\rm s}}^{} with fast internal dynamics and a solid-like regime (for e \varepsilon > es \varepsilon_{{\rm s}}^{} with slow internal dynamics. The cohesion strength es \varepsilon_{{\rm s}}^{} of this freezing transition depends on N G . Equilibrium simulations, where we investigate the diffusional chain dynamics within the globule, are compared with non-equilibrium simulations, where we unfold the globule by pulling the chain ends with prescribed velocity (encompassing low enough velocities so that the linear-response, viscous regime is reached). From both simulation protocols we derive the internal viscosity within the globule. In the liquid-like regime the internal friction increases continuously with e \varepsilon and scales extensive in N G . This suggests an internal friction scenario where the entire chain (or an extensive fraction thereof) takes part in conformational reorganization of the globular structure.  相似文献   

8.
In order to address the concerns about the applicability of the continuum theory of lipid bilayers, we generalize it by including a film with uniaxial dielectric properties representing the polar head groups of the lipid molecules. As a function of the in-plane dielectric constant k|| \kappa_{{\Vert}}^{} of this film, we encounter a sequence of different phases. For low values of k|| \kappa_{{\Vert}}^{} , transmembrane pores have aqueous cores, ions are repelled by the bilayer, and the ion permeability of the bilayer is independent of the ion radius as in the existing theory. For increasing k|| \kappa_{{\Vert}}^{} , a threshold is reached --of the order of the dielectric constant of water-- beyond which ions are attracted to the lipid bilayer by generic polarization attraction, transmembrane pores collapse, and the ion permeability becomes sensitively dependent on the ion radius, results that are more consistent with experimental and numerical studies of the interaction of ions with neutral lipid bilayers. At even higher values of k|| \kappa_{{\Vert}}^{} , the ion/pore complexes are predicted to condense in the form of extended arrays. The generalized continuum theory can be tested quantitatively by studies of the ion permeability as a function of salt concentration and co-surfactant concentration.  相似文献   

9.
The production of D++ \Delta^{{++}}_{} and D0 \Delta^{0}_{} resonances on oxygen nuclei in 16O + p interactions at 3.25A GeV/c was investigated with 4p \pi acceptance. The masses and widths of the resonances were obtained from an analysis of the experimental and background invariant-mass distributions of pp± \pi^{{\pm}}_{} pairs. The fractions of charged pions coming from D++ \Delta^{{++}}_{} and D0 \Delta^{0}_{} decay were estimated. The momentum, kinetic energy, and emission angle distributions of D++ \Delta^{{++}}_{} and D0 \Delta^{0}_{} resonances were reconstructed in the oxygen nucleus rest frame. The slope parameters, T0 , of the reconstructed spectra of invariant cross-sections of D++ \Delta^{{++}}_{} and D0 \Delta^{0}_{} resonances, produced on oxygen nuclei in 16O + p interactions at 3.25A GeV/c , were determined.  相似文献   

10.
11.
In this paper, two modified Ricci models are considered as the candidates of unified dark matter–dark energy. In model one, the energy density is given by rMR=3Mpl(aH2+b[(H)\dot])\rho_{\mathrm{MR}}=3M_{\mathrm{pl}}(\alpha H^{2}+\beta\dot{H}), whereas, in model two, by rMR=3Mpl(\fraca6 R+g[(H)\ddot]H-1)\rho_{\mathrm{MR}}=3M_{\mathrm{pl}}(\frac{\alpha}{6} R+\gamma\ddot{H}H^{-1}). We find that they can explain both dark matter and dark energy successfully. A constant equation of state of dark energy is obtained in model one, which means that it gives the same background evolution as the wCDM model, while model two can give an evolutionary equation of state of dark energy with the phantom divide line crossing in the near past.  相似文献   

12.
Lifetime measurements of excited states in 149Nd have been performed using the advanced time-delayed b \beta g \gamma g \gamma(t) method. Half-lives of 14 excited states in 149Nd have been determined for the first time or measured with higher precision. Twelve new g \gamma -lines and 5 new levels have been introduced into the decay scheme of 149Pr based on results of the g \gamma g \gamma coincidence measurements. Reduced transition probabilities have been determined for 40 g \gamma -transitions in 149Nd . Configuration assignments for 6 rotational bands in 149Nd are proposed. Enhanced E1 transitions indicate that the ground-state band and the band built on the 332.9keV level constitute a pair of the Kp = 5/2±\ensuremath K^{\pi} = 5/2^{\pm} parity doublet bands. Potential energy surfaces on the (b2,b3)\ensuremath (\beta_{2},\beta_{3}) -plane have been calculated for the lowest single quasi-particle configurations in 149Nd using the Strutinski method and the axially deformed Woods-Saxon potential. The predicted occurrence of the octupole-deformed K = 5/2 configuration is in agreement with experiment. Unexpectedly low |D0|\ensuremath \vert D_0\vert values obtained for the Kp = 5/2±\ensuremath K^{\pi} = 5/2^{\pm} parity doublet bands may result from cancellation between the proton and neutron shell correction contributions to |D0|\ensuremath \vert D_0\vert .  相似文献   

13.
We calculate the one-photon loop radiative corrections to the neutral pion-pair photoproduction process p-g ?p-p0p0\pi^-\gamma \ensuremath \rightarrow\pi^-\pi^0\pi^0 . At leading order this reaction is governed by the chiral pion-pion interaction. Since the chiral p+ \pi^{+}_{} p- \pi^{-}_{} ? \rightarrow p0 \pi^{0}_{} p0 \pi^{0}_{} contact vertex depends only on the final-state invariant mass it factors out of all photon loop diagrams. We give analytical expressions for the multiplicative correction factor R ~ a/2p\ensuremath R\sim \alpha/2\pi arising from eight classes of contributing one-photon loop diagrams. An electromagnetic counterterm has to be included in order to cancel the ultraviolet divergences generated by the photon loops. Infrared finiteness of the virtual radiative corrections is achieved (in the standard way) by including soft photon radiation below an energy cut-off l \lambda . The radiative corrections to the total cross-section vary between +2% and -2% for center-of-mass energies from threshold up to 7mp\ensuremath 7m_{\pi} . We study also the radiative corrections to the p0p0\ensuremath \pi^0\pi^0 mass spectrum.  相似文献   

14.
Within the framework of nonrelativistic QED, we prove that, for small values of the coupling constant, the energy function, ${E_{\vec{P}}}Within the framework of nonrelativistic QED, we prove that, for small values of the coupling constant, the energy function, E[(P)\vec]{E_{\vec{P}}}, of a dressed electron is twice differentiable in the momentum [(P)\vec]{\vec{P}} in a neighborhood of [(P)\vec]=0{\vec{P}=0}. Furthermore, \frac?2E[(P)\vec](?|[(P)\vec]|)2{\frac{\partial^2E_{\vec{P}}}{(\partial |\vec{P}|)^2}} is bounded from below by a constant larger than zero. Our results are proven with the help of iterative analytic perturbation theory.  相似文献   

15.
We extend a recent calculation of the nuclear energy density functional in the framework of chiral perturbation theory by computing the isovector surface and spin-orbit terms: ([(?)\vec] rp - [(?)\vec] rn\vec \nabla \rho _p - \vec \nabla \rho _n )2 G d(r \rho) + ([(?)\vec] rp - [(?)\vec] rn\vec \nabla \rho _p - \vec \nabla \rho _n ·([(J)\vec]p - [(J)\vec]n\vec J_p - \vec J_n )G so(r \rho) + ([(J)\vec]p - [(J)\vec]n\vec J_p - \vec J_n )2 G J(r \rho) pertaining to different proton and neutron densities. Our calculation treats systematically the effects from 1p \pi -exchange, iterated 1p \pi -exchange, and irreducible 2p \pi -exchange with intermediate D \Delta -isobar excitations, including Pauli-blocking corrections up to three-loop order. Using an improved density-matrix expansion, we obtain results for the strength functions G d(r \rho) , G so(r \rho) and G J(r \rho) which are considerably larger than those of phenomenological Skyrme forces. These (parameter-free) predictions for the strength of the isovector surface and spin-orbit terms as provided by the long-range pion-exchange dynamics in the nuclear medium should be examined in nuclear structure calculations at large neutron excess.  相似文献   

16.
A detailed investigation of the reaction np ? \rightarrow pp p- \pi^{{-}}_{} has been carried out using the data obtained with the continuous neutron beam produced by charge exchange scattering of protons off the deuterium target. Partial-wave event-by-event analysis based on the maximum likelihood method was applied to determine contributions of different partial waves to the pion production process. A combined analysis of the np ? \rightarrow pp p- \pi^{{-}}_{} and pp ? \rightarrow pp p0 \pi^{{0}}_{} data measured in the same energy region allows us to determine the contribution of isoscalar partial waves (I = 0 in the momentum range from 1.1 up to 1.8GeV/c . The decay of isoscalar partial waves into the (1 S 0)pp p \pi channel provides us with a good tool for the determination of the pp S -wave scalar scattering length in the final state which was found to be a pp = - 7.5±0.3 fm.  相似文献   

17.
In this paper, we study the \frac12 {\frac{{1}}{{2}}} + doubly heavy baryon states WQQ \Omega_{{QQ}}^{} and XQQ \Xi_{{QQ}}^{} by subtracting the contributions from the corresponding \frac12 {\frac{{1}}{{2}}} - doubly heavy baryon states with QCD sum rules, and make reasonable predictions for their masses. Those doubly heavy baryon states may be observed at Tevatron, LHCb and PANDA.  相似文献   

18.
The third-order elastic modulus of α-Fe were calculated based on the computation of lattice sums. The lattice sums were determined using an integer rational basis of invariants composed by vectors connecting equilibrium atomic positions in the crystal lattice. Irreducible interactions within clusters consisting of atomic pairs and triplets were taken into account in performing the calculations. Comparison with experimental data showed that the potential can be written in the form of e9 = - ?i,k A19 rik - 6 + ?i,k A29 rik - 12 + ?i,k,l Q9 I9 - 1\varepsilon _9 = - \sum\nolimits_{i,k} {A_{19} r_{ik}^{ - 6} } + \sum\nolimits_{i,k} {A_{29} r_{ik}^{ - 12} + \sum\nolimits_{i,k,l} {Q_9 I_9^{ - 1} } }, where I9 = [(r)\vec]ik2 [ ( [(r)\vec]ik [(r)\vec]kl )2 + ( [(r)\vec]li [(r)\vec]ik )2 ] + [(r)\vec]kl2 [ ( [(r)\vec]ik [(r)\vec]kl )2 + ( [(r)\vec]kl [(r)\vec]li )2 ] + [(r)\vec]li2 [ ( [(r)\vec]li [(r)\vec]ik )2 + ( [(r)\vec]kl [(r)\vec]li )2 ]I_9 = \vec r_{ik}^2 \left[ {\left( {\vec r_{ik} \vec r_{kl} } \right)^2 + \left( {\vec r_{li} \vec r_{ik} } \right)^2 } \right] + \vec r_{kl}^2 \left[ {\left( {\vec r_{ik} \vec r_{kl} } \right)^2 + \left( {\vec r_{kl} \vec r_{li} } \right)^2 } \right] + \vec r_{li}^2 \left[ {\left( {\vec r_{li} \vec r_{ik} } \right)^2 + \left( {\vec r_{kl} \vec r_{li} } \right)^2 } \right]. If the values of [(r)\vec]ik\vec r_{ik} are scaled in half-lattice constant units, then A19 = 1.22 ë t9 û GPa, A29 = 5.07 ×102 ë t15 û GPa, Q9 = 5.31 ë t9 û GPaA_{19} = 1.22\left\lfloor {\tau ^9 } \right\rfloor GPa, A_{29} = 5.07 \times 10^2 \left\lfloor {\tau ^{15} } \right\rfloor GPa, Q_9 = 5.31\left\lfloor {\tau ^9 } \right\rfloor GPa, and τ = 1.26 ?. It is shown that the condition of thermodynamic stability of a crystal requires that we allow for irreducible interactions in atom triplets in at least four coordination spheres. The analytical expressions for the lattice sums determining the contributions from irreducible interactions in the atom triplets to the second- and third-order elastic moduli of cubic crystals in the case of interactions determined by I 9 are presented in the appendix.  相似文献   

19.
This paper considers Hardy–Lieb–Thirring inequalities for higher order differential operators. A result for general fourth-order operators on the half-line is developed, and the trace inequality
tr( (-D)2 - CHRd,2\frac1|x|4 - V(x) )-gCgò\mathbbRd V(x)+g+ \fracd4 dx,     g 3 1 - \frac d 4,\mathrm{tr}\left( (-\Delta)^2 - C^{\mathrm{HR}}_{d,2}\frac{1}{|x|^4} - V(x) \right)_-^{\gamma}\leq C_\gamma\int\limits_{\mathbb{R}^d} V(x)_+^{\gamma + \frac{d}{4}}\,\mathrm{d}x, \quad \gamma \geq 1 - \frac d 4,  相似文献   

20.
Using chiral perturbation theory we calculate for pion Compton scattering the isospin-breaking effects induced by the difference between the charged and neutral pion mass. At one-loop order this correction is directly proportional to mp±2-mp02\ensuremath{m_{\pi^\pm}^2-m_{\pi^0}^2} and free of (electromagnetic) counterterm contributions. The differential cross-section for charged pion Compton scattering p-g? p-g\ensuremath{\pi^-\gamma \rightarrow \pi^-\gamma} gets affected (in backward directions) at the level of a few permille. At the same time the isospin-breaking correction leads to a small shift of the pion polarizabilities by d(ap- bp) @ 1.3 ·10-5\ensuremath{\delta(\alpha_\pi- \beta_\pi) \simeq 1.3 \cdot 10^{-5}} fm^3. In case of the low-energy gg? p0p0\ensuremath{\gamma\gamma \rightarrow \pi^0\pi^0} reaction isospin breaking manifests itself through a cusp effect at the p+p-\ensuremath{\pi^+\pi^-} threshold. We give an improved estimate for it based on the empirical p \pi p \pi -scattering length difference a0-a2\ensuremath{a_0-a_2} .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号