首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have experimentally characterized and theoretically described plastic flow localization in Gum Metal, a special titanium alloy with high strength, low Young’s modulus, excellent cold workability and low resistance to shear in certain crystallographic planes. The electron transmission microscopy experiments demonstrate that plastic flow is localized in giant faults – macroscopic planar defects carrying very large plastic strains (thousand percent or more) – in deformed Gum Metal. Also, regions with highly inhomogeneous elastic strains and varying crystal lattice orientation are experimentally observed in the vicinity of giant faults. A theoretical model is suggested describing the generation of giant faults as a process resulting from generation and evolution of nanodisturbances (nanoscopic planar areas of local shear) in Gum Metal. It is shown that giant faults can effectively nucleate and evolve in Gum Metal, and their intersection with grain boundaries produces both elastic strain accumulation and inhomogeneities of crystal lattice orientation. This behavior of giant faults is expected to be essential for excellent cold ductility of high-strength Gum Metal.  相似文献   

2.
刘振国  金涛  树学峰 《实验力学》2014,29(6):760-768
通过压缩具有一定倾斜角(0°,10°,15°,20°和25°)试件和双剪切模型试件,实现了单轴压缩、压缩-剪切复合应力以及纯剪切三种应力状态,得到PMMA(聚甲基丙烯酸甲酯)在相应应力状态下的应力-应变曲线,同时对不同应力状态下试件的破坏模式进行了分析。结果表明:在不同受力环境中材料的强度和破坏的机理不同;同单轴压缩状态下相比,材料在压缩-剪切复合应力状态下屈服极限、强度极限以及破坏应变均不同程度的增大,呈现明显的"剪切增强"现象。单轴压缩与压缩-剪切应力状态下试件的破坏模式均为在试件短对角面上出现明显的剪切屈服带,由应力分析得出试件剪应力在短对角面上达到最大,引起在此平面上分子链间滑动从而产生应变软化形成剪切屈服带;双剪切试件的破坏模式为与剪切面呈45°的斜面。  相似文献   

3.
Investigated are the Tsai-Hill and Tsai-Wu strength criteria for unidirectional S-glass, E-glass and graphite fiber reinforced composite plate specimens subjected to off-axis tension and compression. Off-axis shear is analyzed by using a circular specimen. The specimen contains almost collinear slits and antisymmetric cut-outs such that their orientation can change with the local axis to produce different combination of normal and shear action. Uniformity of the two-dimensional stress distribution in the center portion of the specimen is checked photoelastically. The stress coefficient F12 in the Tsai-Wu criterion is determined experimentally for a normal extension and pure shear stress field; it is used to analyze the more general situations of off-axis tension, off-axis compression and off-axis shear. The results agreed well with experiments. Similar findings are obtained for the Tsai-Hill criterion except for the case of off-axis shear where large deviations occurred between analytical and experimental results.  相似文献   

4.
Tungsten/copper (W/Cu) particle reinforced composites were used to investigate the scaling effects on the deformation and fracture behaviour. The effects of the volume fraction and the particle size of the reinforcement (tungsten particles) were studied. W/Cu-80/20, 70/30 and 60/40 wt.% each with tungsten particle size of 10 μm and 30 μm were tested under compression and shear loading. Cylindrical compression specimens with different volumes (DS = H) were investigated with strain rates between 0.001 s−1 and about 5750 s−1 at temperatures from 20 °C to 800 °C. Axis-symmetric hat-shaped shear specimens with different shear zone widths were examined at different strain rates as well. A clear dependence of the flow stress on the deformed volume and the particle size was found under compression and shear loading. Metallographic investigation was carried out to show a relation between the deformation of the tungsten particles and the global deformation of the specimens. The size of the deformed zone under either compression or shear loading has shown a clear size effect on the fracture of the hat-shaped specimens.The quasi-static flow curves were described with the material law from Swift. The parameters of the material law were presented as a function of the temperature and the specimen size. The mechanical behaviour of the composite materials were numerically computed for an idealized axis-symmetric hat-shaped specimen to verify the determined material law.  相似文献   

5.
With geometrically-constrained specimens, the spatiotemporally inhomogeneous deformation of a Zr-based bulk-metallic glass in uniaxial, quasistatic, compression was investigated. Decreasing the height/width ratio of specimens from 2 to 0.5 significantly increases the plastic strain from 2% to about 80%. Using an infrared camera, we first observe in situ dynamic shear-banding operations during compression at various strain rates. The shear banding is highly dependent on strain rates, either intermittent at the lower strain rate or successive at the higher strain rate. Scanning electron microscopy observations show the spatiality of the rate-dependent shear banding. The serrated plastic flow is a result of the shear-banding operations. At the lower strain rate, more simultaneous shear-banding operations result in more obvious serrations, while at the higher strain rate, fewer simultaneous shear-banding operations cause less obvious serrations.  相似文献   

6.
Dynamic material properties inferred via experiment can be strongly influenced by the choice of test specimen geometry unless care is taken to ensure that mechanical fields (stress, strain, etc.) within the specimen adequately reflect the ideal homogeneous deformation state. In this work, finite element models of simple shear, cylindrical compression, simple tension, and bi-conical shear test specimens were analyzed in order to quantify the relative conformity of each specimen to its corresponding ideal. Three metrics of conformity were evaluated, based respectively on the distributions of stress, strain, and strain energy density. The results show that a simple shear specimen provides superior conformity. Other factors involved in the selection of test specimen geometry are also discussed. Such factors include relative linearity and symmetry of measured stress–strain data, grip slip, and heat build up.  相似文献   

7.
Compressive response and failure of balsa wood   总被引:2,自引:0,他引:2  
Balsa wood is a natural cellular material with excellent stiffness-to-weight and strength-to-weight ratios as well as superior energy absorption characteristics. These properties are derived from the microstructure, which consists of long slender cells (tracheids) with approximately hexagonal crosssections that are arranged axially. Parenchyma are a second type of cells that are radially arranged in groups that periodically penetrate the tracheids (rays). Under compression in the axial direction the material exhibits a linearly elastic regime that terminates by the initiation of failure in the form of localized kinking. Subsequently, under displacement-controlled compression, a stress plateau is traced associated with the gradual spreading of crushing of the cells through the material. The material is less stiff and weaker in the tangential and radial directions. Compression in these directions crushes the tracheids laterally but results in a monotonically increasing response typical of lateral crushing of elastic honeycombs. The elastic and inelastic properties in the three directions have been established experimentally as a function of the wood density. The microstructure and its deformation modes under compression have been characterized using scanning electron microscopy. In the axial direction it was observed that in the majority of the tests, failure initiated by kinking in the axial–tangential plane. The local misalignment of tracheids in zones penetrated by rays ranged from 4° to 10° and axial compression results in shear in these zones. Measurement of the shear response and the shear strength in the planes of interest enabled estimation of the kinking stress using the Argon–Budiansky kinking model. The material strength predicted in this manner has been found to provide a bounding estimate of the axial strength for a broad range of wood densities. The energy absorption characteristics of the wood have also been measured and the specific energy absorption was found to be comparable to that of metallic honeycombs of the same relative density.  相似文献   

8.
不同加载状态下TA2钛合金绝热剪切破坏响应特性   总被引:2,自引:1,他引:1  
一般认为绝热剪切现象在宏观上表现为材料动态本构失稳,即热软化大于应变硬化.本文采用帽型受迫剪切试样研究TA2钛合金的动态力学特性和本构失稳过程.首先对剪切区加载应力状态进行理论和数值分析,通过合理设计帽型试样,剪切区变形可近似按剪切状态处理;结合二维数字图像相关法(two-dimensional digital image correlation,DIC-2D)直接测试试样剪切区应变演化,给出帽型受迫剪切实验的等效应力-应变响应曲线.进一步,利用Hopkinson压杆对TA2钛合金开展动态压缩及帽型剪切对比试验研究,比较压缩、剪切试验得到的等效应力-应变曲线,采用"冻结"试样方法分析试样中绝热剪切局域化演化过程,探讨不同加载状态下TA2钛合金的绝热剪切破坏现象及其动态力学响应特性.实验结果表明,在塑性变形初始阶段,动态压缩及剪切加载下的等效应力-应变曲线符合较好,但随塑性损伤发展及绝热剪切带形成,两者出现分离,表明损伤及绝热剪切演化过程与应力状态相关.剪切试样实验得到的本构"软化"特性能够反映绝热剪切带起始、破坏演化过程的力学响应特性,而在动态压缩实验中,即使试样中已出现双锥形的绝热剪切带及局部裂纹分布,其表观等效应力-应变曲线并不出现软化特征,动态压缩实验无法得到关于绝热剪切起始、发展以及破坏的本构软化响应特性.  相似文献   

9.
Bulk metallic glass with composition Ti40Zr25Ni8Cu9Be18 exhibits considerably high compressive yield stress, significant plasticity (with a concomitant vein-like fracture morphology) and relatively low density. Yielding and intrinsic plasticity of this alloy are discussed in terms of its thermal and elastic properties. An influence of normal stresses acting on the shear plane is evidenced by: (i) the fracture angle (<45°) and (ii) finite-element simulations of nanoindentation curves, which require the use of a specific yield criterion, sensitive to local normal stresses acting on the shear plane, to properly match the experimental data. The ratio between hardness and compressive yield strength (constraint factor) is analyzed in terms of several models and is best adjusted using a modified expanding cavity model incorporating a pressure-sensitivity index defined by the Drucker–Prager yield criterion. Furthermore, comparative results from compression tests and nanoindentation reveal that deformation also causes strain softening, a phenomenon which is accompanied with the occurrence of serrated plastic flow and results in a so-called indentation size effect (ISE). A new approach to model the ISE of this metallic glass using the free volume concept is presented.  相似文献   

10.
A new shear-compression experiment for investigating the influence of hydrostatic pressure (mean stress) on the large deformation shear response of elastomers is presented. In this new design, a nearly uniform torsional shear strain is superposed on a uniform volumetric compression strain generated by axially deforming specimens confined by a stack of thin steel disks. The new design is effective in applying uniform shear and multiaxial compressive stress on specimens while preventing buckling and barreling during large deformation under high loads. By controlling the applied pressure and shear strain independently of each other, the proposed setup allows for measuring the shear and bulk response of elastomers at arbitrary states within the shear-pressure stress space. Thorough evaluation of the new design is conducted via laboratory measurements and finite element simulations. Practical issues and the need for care in specimen preparation and data reduction are explained and discussed. The main motivation behind developing this setup is to aid in characterizing the influence of pressure or negative dilatation on the constitutive shear response of elastomeric coating materials in general and polyurea in particular. Experimental results obtained with the new design illustrate the significant increase in the shear stiffness of polyurea under moderate to high hydrostatic pressures.  相似文献   

11.
The mechanical behaviors of rocks affected by high temperature and stress are generally believed to be significant for the stability of certain projects involving rocks, such as nuclear waste storage and geothermal resource exploitation. In this paper, veined marble specimens were treated to high temperature treatment and then used in conventional triaxial compression tests to investigate the effect of temperature, confining pressure, and vein angle on strength and deformation behaviors. The results show that the strength and deformation parameters of the veined marble specimens changed with the temperature, presenting a critical temperature of 600℃. The triaxial compression strength of a horizontal vein(β = 90°) is obviously larger than that of a vertical vein(β = 0°). The triaxial compression strength,elasticity modulus, and secant modulus have an approximately linear relation to the confining pressure. Finally,Mohr–Coulomb and Hoek–Brown criteria were respectively used to analyze the effect of confining pressure on triaxial compression strength.  相似文献   

12.
In the present work, shear-compression specimen was successfully employed to study the shear flow behavior of AZ31 magnesium alloy at high temperatures and in quasi-static regime. The loading process of shear-compression testing was simulated using ABAQUS software. This was carried out in the temperature range of 250–450°C and displacement rates of 1.5, 15 and 150 mm/min. In addition, to validate the numerical simulation results, the shear compression specimens were also compressed experimentally at the same conditions of numerical ones. Equivalent stress–strain curves obtained from numerical simulation results along with microstructural observations were utilized to investigate the effect of loading conditions on deformation behavior of the experimental alloy. The results indicated a homogenous distribution of shear strains within the gage and the high applicability of shear-compression specimen to study shear flow behavior of materials at hot deformation conditions.  相似文献   

13.
The elastic limit provides a convenient concept for the design of mechanical and structural parts which should exhibit no permanent deformation after loading and subsequent unloading. The offset tensile yield strength of a material for small offsets, such as the 0.01-percent offset, is considered to be a good approximation of the elastic limit. TheWT-bend tester provides an alternative method to the tension test of determining the offset yield strength of materials. The specimens are subjected to cyclic bending and energy dissipation is used as a yield criterion. The stress as a function of the offset has been determined for a number of alloys. For some of the materials investigated cyclic stresses at levels considerably below the 0.01-percent offset yield strength caused significant changes in mechanical properties. Furthermore, for some highly cold-worked materials substantial cyclic softening could be observed. This raises the question: where is the elastic limit? It is hypothesized that no true elastic limit exists and that it would be possible only to determine an anelastic limit.  相似文献   

14.
We investigated the deformation of a strong shear thinning droplet undergoing simple shear flow in a Newtonian liquid. The droplet was an aqueous solution of poly(ethylene oxide) end capped with an alkyl group that forms spherical micelles in aqueous solution. At high concentrations and below a critical temperature, the jammed micelles showed strong shear thinning behaviour, and neither a yield stress nor a Newtonian viscosity was observed. At small shear rates, the droplet rotated and aligned in the flow, but did not deform or only very weakly. At high shear rates, the droplet deformation increased with increasing shear rate. The deformed droplet did not relax after the shear was stopped except for a modest rounding of the edges. For each shear rate, an apparent viscosity, η ad, of the equivalent Newtonian droplet was calculated assuming affine deformation. η ad showed a power law dependence on the capillary number Ca with an exponent of − 1.8 and was larger than the shear viscosity of the micelle suspension at the same shear rates. The results were explained by the existence of a strong gradient of the viscosity inside the droplet leading to a very low viscosity fluid layer near the droplet/matrix interface.  相似文献   

15.
为了能在传统的分离式Hopkinson压杆上准确可靠地测试激光金属沉积GH4169的动态剪切特性,基于数值模拟方法对比分析了三种不同动态剪切试样形式及尺寸对剪切区应力分布的影响,结果表明:经过尺寸优化后的双剪切试样的剪切区剪应力占主导地位,可实现近似纯剪切的动态剪切实验。利用此试样形式,系统测试了不同取向(扫描方向、沉积方向)的LMD GH4169试样在不同应变率下的剪切应力应变曲线,并对破坏后试样进行了SEM分析观察。结果表明:(1) 本文中选用的试样形式剪切纯度高,应力沿剪切区宽度厚度分布均匀,可以更好地得到材料的动态剪切特性;(2) 对实验所得剪应力-剪应变曲线进行分析,发现本材料在扫描路径方向和沉积方向并没有表现出明显的各向异性,但随着应变率的增加,具有明显的应变率强化效应;将单轴压缩和动态剪切应力应变曲线同时转换为等效应力应变曲线,对比证实了试样形式能很好反应材料的剪切特性;(3) 通过对LMD GH4169剪切变形破坏试样的微观分析发现,随着应变率升高,断口韧窝尺寸和深度减小,韧性降低,在更小的变形量下容易剪切失效。初始微观缺陷容易导致材料的动态剪切破坏。  相似文献   

16.
本文以实际岩体工程为背景,利用WDT-1500 仪器开展了轴向、侧向同时卸荷条件下砂岩的三轴试验. 结果表明:轴、侧向同卸荷这种卸荷路径下,砂岩试样破坏时并没有出现应力峰值,为了定义试样的破坏强度,将最大与最小主应力差随最小主应力的变化关系曲线上应力跌落的拐点处的应力值定义为破坏强度. 砂岩变形初始段发生应力跌落和轴向应变回弹,破坏前无明显的弹性和屈服阶段;试验的过程中,砂岩的侧向变形明显大于轴向变形,其体积应变一直处于膨胀状态;相对于砂岩的常规三轴试验结果,试样破坏时的强度在轴向、侧向同时卸荷条件下有所降低. 初始轴压和初始围压对试样的力学特征有十分显著的影响,但围压的卸荷速率却并不显著. 砂岩的破坏特征主要是以张-拉为主的混合张剪的破坏.   相似文献   

17.
对广西靖西取得的3种红粘土原状土样以及室内制备的重塑土样进行单轴压缩试验和三轴剪切试验(包括浸水饱和后的试验),其目的是研究静力荷载作用下红粘土的固结变形和强度特征。研究表明,在较大的压缩应力作用下,土样仍有较大的孔隙比;红粘土的破坏面为一个曲面变化形态,试样首先沿较为软弱的不规则面发生,然后才形成贯通的滑动面;尽管土样在破坏时出现明显的剪切破坏面(表现为一定的脆性破坏特征),但其应力应变关系呈现应变硬化的特点,表明红粘土有很强的粘滞特性。  相似文献   

18.
This paper describes a new test facility for determining material mechanical properties of structural concrete. The novel facility subjects 100 mm cubic concrete specimens to true multiaxial compression (σ1σ2σ3) up to 400 MPa at temperatures of up to 300°C. Forces are delivered through three independent loading frames equipped with servo-controlled hydraulic actuators creating uniform displacement boundary conditions via rigid platens. Specimen deformation is calculated from displacements measured to an accuracy of 10−6 m using a system of six laser interferometers. The combination of stiff loading frames, rigid platens, an accurate and reliable strain measurement system and a fast control system enables investigation of the material response in the post-peak range. The in-house developed control software allows complex multi-stage experiments involving (i) load and temperature cycling, (ii) small stress probes and (iii) arbitrary (pre-defined) loading paths. The program also enables experiments in which the values of the control parameters and the execution of the test sequences depend on the response of the specimen during the test. The capabilities of the facility are illustrated in this paper by experiments determining the effects of different heat-load regimes on the strength and stiffness of the material and tests identifying the tangent stiffness matrix of the material and the associated changes in the acoustic tensor under multiaxial compression.  相似文献   

19.
Shear localization induced brittleness is the main drawback of metallic glasses which restricts their practical applications. Previous experiments have provided insights on how to suppress shear localization by reducing the sample size of metallic glasses to the order of 100 nm. In order to reveal the size effects and associated deformation mechanisms of metallic glasses in an even finer scale, we perform large-scale atomistic simulations for the uniaxial compression and tension of metallic glass nanowires. The simulation results show that, as the diameter of metallic glass samples decreases from 45 nm to 8 nm, the tensile yield strength increases while the compressive yield strength decreases. Homogeneous flow is observed as the governing deformation mechanism in all simulated metallic glass samples, where plastic shearing tends to initiate on the sample surface and propagate into the interior. To rationalize the size dependence of yield strengths, we propose a theoretical model based on the concept of surface stress and Mohr–Coulomb criterion. The theoretical predictions agree well with the simulation results, implying the important role of surface stress on the yielding of MGs below 100 nm. Finally, a discussion about the size effects of strength in metallic glasses at different length scales is provided. Our results suggest that the shear band energy and surface stress might be the two crucial parameters in determining the critical size required for the transition from shear localization to homogeneous deformation in MGs.  相似文献   

20.
A finite-difference analysis of the state of stress in a double-notch interlaminar shear strength specimen is developed. The effects of geometry and material parameters on the stress distributions are investigated. It has been found that, in agreement with previous determinations,1–7 a uniform distribution of shear stress on the fracture plane does not exist. The shear stress distribution becomes more uniform for increased material anisotropy and for small (L/T) ratios, whereL is the distance between the notches andT is the specimen thickness. Also, it has been determined that the notch size (W) and the distance from the notches to the loaded ends of the specimen (h) do not influence the stress distributions significantly. The effects of variations in the (L/T) ratio, the notch size (W), and the length (h) were investigated experimentally. For a graphite/epoxy laminate of 0/90-deg square wave it has been found that the apparent shear strength determined by double-notch shear tests decreases significantly with an increase in (L/T) ratio. The decrease in the apparent shear strength with an increase inh, however, is very small. Also, the apparent shear strength is not affected significantly by increasing the notch sizeW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号