首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the Cauchy problem for the nonlinear parabolic equation $${\partial _t}u| = \vartriangle u + F(x,t,u,\nabla u){\text{ in }}{{\text{R}}^N} \times (0,\infty ),{\text{ }}u(x,0) = \varphi (x){\text{ in }}{{\text{R}}^N},$$ , where $$\begin{gathered} N \geqslant 1, \hfill \\ F \in C(R^N \times (0,\infty ) \times R \times R^N ), \hfill \\ \phi \in L^\infty (R^N ) \cap L^1 (R^N ,(1 + |x|^K )dx)forsomeK \geqslant 0 \hfill \\ \end{gathered} $$ . We give a sufficient condition for the solution to behave like a multiple of the Gauss kernel as t → ∞ and obtain the higher order asymptotic expansions of the solution in W 1,q (R N ) with 1 ≤ q ≤ ∞.  相似文献   

2.
A difference scheme is constructed for the solution of the variational equation $$\begin{gathered} a\left( {u, v} \right)---u \geqslant \left( {f, v---u} \right)\forall v \varepsilon K,K \{ vv \varepsilon W_2^2 \left( \Omega \right) \cap \mathop {W_2^1 \left( \Omega \right)}\limits^0 ,\frac{{\partial v}}{{\partial u}} \geqslant 0 a.e. on \Gamma \} ; \hfill \\ \Omega = \{ x = (x_1 ,x_2 ):0 \leqslant x_\alpha< l_\alpha ,\alpha = 1, 2\} \Gamma = \bar \Omega - \Omega ,a(u, v) = \hfill \\ = \int\limits_\Omega {\Delta u\Delta } vdx \equiv (\Delta u,\Delta v, \hfill \\ \end{gathered} $$ The following bound is obtained for this scheme: $$\left\| {y - u} \right\|_{W_2 \left( \omega \right)}^2 = 0(h^{(2k - 5)/4} )u \in W_2^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0(h^{\min (k - 2;1,5)/2} ),u \in W_\infty ^k \left( \Omega \right) \cap W_2^3 \left( \Omega \right)$$ The following bounds are obtained for the mixed boundary-value problem: $$\begin{gathered} \left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{\min \left( {k - 2;1,5} \right)} } \right),u \in W_\infty ^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{k - 2,5} } \right), \hfill \\ u \in W_2^k \left( \Omega \right),k \in \left[ {3,4} \right] \hfill \\ \end{gathered} $$ .  相似文献   

3.
4.
Rudykh  G. A.  Semenov  É. I. 《Mathematical Notes》2001,70(5-6):714-719
In this paper, we obtain new exact non-self-similar solutions of the nonlinear diffusion equation $$\begin{gathered} {\text{ }}u_t = \Delta \ln u, \hfill \\ u \triangleq u\left( {x,t} \right):\Omega \times \mathbb{R}^ + \to \mathbb{R},{\text{ }} x \in \mathbb{R}^n , \hfill \\ \end{gathered} $$ where $\Omega \subset \mathbb{R}^n $ is the domain and $\mathbb{R}^ + = \left\{ {t:0 \leqslant t < + \infty } \right\},{\text{ }}u\left( {x,t} \right) \geqslant 0$ is the temperature of the medium.  相似文献   

5.
We consider the problems of dientifying the parametersa ij (x), b i (x), c(x) in a 2nd order, linear, uniformly elliptic equation, $$\begin{gathered} - \partial _i (a_{ij} (x)\partial _j u) + b_i (x)\partial _i u + c(x)u = f(x),in\Omega , \hfill \\ \partial _v u|_{\partial \Omega } = \phi (s),s \in \partial \Omega , \hfill \\ \end{gathered} $$ on the basis of measurement data $$u(s) = z(s),s \in B \subset \partial \Omega ,$$ with an equality constraint and inequality constraints on the parameters. The cost functionals are one-sided Gâteaux differentiable with respect to the state variables and the parameters. Using the Duboviskii-Milyutin lemma, we get maximum principles for the identification problems, which are necessary conditions for the existence of optimal parameters.  相似文献   

6.
In this paper, we deal with the oscillatory behavior of solutions of the neutral partial differential equation of the form $$\begin{gathered} \frac{\partial }{{\partial t}}\left[ {p\left( t \right)\frac{\partial }{{\partial t}}(u\left( {x,t} \right) + \sum\limits_{i = 1}^t {p_i \left( t \right)u\left( {x,t - \tau _i } \right)} )} \right] + q\left( {x,t} \right)f_j (u(x,\sigma _j (t))) \hfill \\ = a\left( t \right)\Delta u\left( {x,t} \right) + \sum\limits_{k = 1}^n {a_k \left( t \right)} \Delta u\left( {x,\rho _k \left( t \right)} \right), \left( {x,t} \right) \in \Omega \times R_ + \equiv G \hfill \\ \end{gathered} $$ where Δ is the Laplacian in EuclideanN-spaceR N, R+=(0, ∞) and Ω is a bounded domain inR N with a piecewise smooth boundary δΩ.  相似文献   

7.
In this paper,we consider the following chemotaxis model with ratio-dependent logistic reaction term u/t=D▽(▽u-u▽ω/ω)+u(α-bu/ω),(x,t)∈QT,ω/t=βu-δω,(x,t)∈QT,u▽㏑(u/w)·=0,x ∈Ω,0tT,u(x,0)=u0(x)0,x ∈,w(x,0)=w0(x)0,x ∈,It is shown that the solution to the problem exists globally if b+β≥0 and will blow up or quench if b+β0 by means of function transformation and comparison method.Various asymptotic behavior related to different coefficients and initial data is also discussed.  相似文献   

8.
Consider the following functional equations of neutral type: $$\begin{gathered} (i) (d/dt)D(t,x_t ) = L(t,x_t ), \hfill \\ (ii) (d/dt)D(t,x_t ) = L(t,x_t ) + B(t)u(t), \hfill \\ (iii) (d/dt)D(t,x_t ) = L(t,x_t ) + B(t)u(t) + f(t,x(t),u(t)), \hfill \\ \end{gathered} $$ whereD, L are bounded linear operators fromC([?h, 0],E n) intoE n for eacht?(σ, ∞) =J, B is ann ×m continuous matrix function,u:JC m is square integrable with values in the unitm-dimensional cubeC m, andf(t, 0, 0)=0. We prove that, if the system (i) is uniformly asymptotically stable and if the controlled system (ii) is controllable, then the system (iii) is null-controllable with constraints, provided that $$f = f_1 + f_2 $$ , where $$\begin{gathered} |f_1 (t,\phi ,0)| \leqslant \varepsilon \parallel \phi \parallel , |f_2 (t,\phi ,0)| \leqslant \pi (t)\parallel \phi \parallel , t \geqslant \sigma , \hfill \\ \Pi = \int_0^\infty {\pi (t)dt< \infty .} \hfill \\ \end{gathered} $$   相似文献   

9.
Consider the following Bolza problem: $$\begin{gathered} \min \int {h(x,u) dt,} \hfill \\ \dot x = F(x) + uG(x), \hfill \\ \left| u \right| \leqslant 1, x \in \Omega \subset \mathbb{R}^2 , \hfill \\ x(0) = x_0 , x(1) = x_1 . \hfill \\ \end{gathered} $$ We show that, under suitable assumptions onF, G, h, all optimal trajectories are bang-bang. The proof relies on a geometrical approach that works for every smooth two-dimensional manifold. As a corollary, we obtain existence results for nonconvex optimization problems.  相似文献   

10.
In the first section of this article a new method for computing the densities of integrals of motion for the KdV equation is given. In the second section the variation with respect to q of the functional ∫ 0 π w (x,t,x,;q)dx (t is fixed) is computed, where W(x, t, s; q) is the Riemann function of the problem $$\begin{gathered} \frac{{\partial ^z u}}{{\partial x^2 }} - q(x)u = \frac{{\partial ^2 u}}{{\partial t^2 }} ( - \infty< x< \infty ), \hfill \\ u|_{t = 0} = f(x), \left. {\frac{{\partial u}}{{\partial t}}} \right|_{t = 0} = 0. \hfill \\ \end{gathered} $$   相似文献   

11.
LetΛ 1(Ω) be the first eigenvalue of the vector-valued problem $$\begin{gathered} \Delta u + \alpha grad div u + \Delta u = 0 in \Omega , \hfill \\ u = 0 in \partial \Omega , \hfill \\ \end{gathered} $$ , withα>0. Letλ 1(Ω) be the first eigenvalue of the scalar problem $$\begin{gathered} \Delta u + \lambda u = 0 in \Omega , \hfill \\ u = 0 on \partial \Omega . \hfill \\ \end{gathered} $$ . The paper contains a proof of the inequality $$\left( {1 + \frac{\alpha }{n}} \right)\lambda _1 \left( \Omega \right) > \Lambda _1 \left( \Omega \right) > \left( \Omega \right)$$ and improves recent estimates of Sprössig [15] and Levine and Protter [11]. Moreover we show, ifΩ is a ball, that an eigensolution u1, associated withΛ 1(Ω) is not unique and that the eigensolutions for this and higher eigenvalues are never rotationally invariant. Finally we calculate some eigensolutions explicitly.  相似文献   

12.
In the paper, we obtain the existence of positive solutions and establish a corresponding iterative scheme for BVPs $$\left\{ \begin{gathered} (\phi _p (u\prime ))\prime + q(t)f(t, u) = 0,0< t< 1, \hfill \\ u(0) - B(u\prime (\eta )) = 0, u\prime (1) = 0 \hfill \\ \end{gathered} \right.$$ and $$\left\{ \begin{gathered} (\phi _p (u\prime ))\prime + q(t)f(t, u) = 0,0< t< 1, \hfill \\ u\prime (0) = 0, u(1) + B(u\prime (\eta )) = 0 \hfill \\ \end{gathered} \right.$$ The main tool is the monotone iterative technique. Here, the coefficientq(t) may be singular att = 0,1.  相似文献   

13.
A maximum principle is obtained for control problems involving a constant time lag τ in both the control and state variables. The problem considered is that of minimizing $$I(x) = \int_{t^0 }^{t^1 } {L (t,x(t), x(t - \tau ), u(t), u(t - \tau )) dt} $$ subject to the constraints 1 $$\begin{gathered} \dot x(t) = f(t,x(t),x(t - \tau ),u(t),u(t - \tau )), \hfill \\ x(t) = \phi (t), u(t) = \eta (t), t^0 - \tau \leqslant t \leqslant t^0 , \hfill \\ \end{gathered} $$ 1 $$\psi _\alpha (t,x(t),x(t - \tau )) \leqslant 0,\alpha = 1, \ldots ,m,$$ 1 $$x^i (t^1 ) = X^i ,i = 1, \ldots ,n$$ . The results are obtained using the method of Hestenes.  相似文献   

14.
In this paper, I propose some problems, of topological nature, on the energy functional associated to the Dirichlet problem $$\left\{ \begin{gathered} - \Delta {\kern 1pt} {\kern 1pt} u = f\left( {x,u} \right){\text{in}}\Omega \hfill \\ u_{\left| {\wp \Omega } \right.} = 0 \hfill \\ \end{gathered} \right.$$ Positive answers to these problems would produce innovative multiplicity results on problem (Pf).  相似文献   

15.
We consider the control processes $$\begin{gathered} (E) z_{xy} + A(x,y)z_x + B(x,y)z_y + C(x,y)z = F(x,y)U(x,y) \hfill \\ q.o. in R = [0,\alpha [ \times [0,\beta [, \hfill \\ \end{gathered} $$ $$\begin{gathered} (\tilde E) z_{xy} + \bar A(x,y)z_x + \bar B(x,y)z_y + \bar C(x,y)z = \bar F(x,y)U(x,y) \hfill \\ q.o. in R \hfill \\ \end{gathered} $$ We show that under appropriate assumptions on the dataA, B, C, F, if the process (E) is completely controllable, then the perturbed process (ē) is completely controllable too. The result is obteined proving for the evolution matrixV, a continuous dependence on the coefficientsA, B, C.  相似文献   

16.
A thorough investigation of the systemd~2y(x):dx~2 p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤xx_0>0) -η, x_0≤x<2π(η>0)p(x)=p(x 2π),-∞相似文献   

17.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

18.
In this paper, a viscoelastic equation with nonlinear boundary damping and source terms of the form $$\begin{array}{llll}u_{tt}(t)-\Delta u(t)+\displaystyle\int\limits_{0}^{t}g(t-s)\Delta u(s){\rm d}s=a\left\vert u\right\vert^{p-1}u,\quad{\rm in}\,\Omega\times(0,\infty), \\ \qquad\qquad\qquad\qquad\qquad u=0,\,{\rm on}\,\Gamma_{0} \times(0,\infty),\\ \dfrac{\partial u}{\partial\nu}-\displaystyle\int\limits_{0}^{t}g(t-s)\frac{\partial}{\partial\nu}u(s){\rm d}s+h(u_{t})=b\left\vert u\right\vert ^{k-1}u,\quad{\rm on} \ \Gamma_{1} \times(0,\infty) \\ \qquad\qquad\qquad\qquad u(0)=u^{0},u_{t}(0)=u^{1},\quad x\in\Omega, \end{array}$$ is considered in a bounded domain ??. Under appropriate assumptions imposed on the source and the damping, we establish both existence of solutions and uniform decay rate of the solution energy in terms of the behavior of the nonlinear feedback and the relaxation function g, without setting any restrictive growth assumptions on the damping at the origin and weakening the usual assumptions on the relaxation function g. Moreover, for certain initial data in the unstable set, the finite time blow-up phenomenon is exhibited.  相似文献   

19.
This article mainly consists of two parts. In the first part the initial value problem (IVP) of the semilinear heat equation $$\begin{gathered} \partial _t u - \Delta u = \left| u \right|^{k - 1} u, on \mathbb{R}^n x(0,\infty ), k \geqslant 2 \hfill \\ u(x,0) = u_0 (x), x \in \mathbb{R}^n \hfill \\ \end{gathered} $$ with initial data in $\dot L_{r,p} $ is studied. We prove the well-posedness when $$1< p< \infty , \frac{2}{{k(k - 1)}}< \frac{n}{p} \leqslant \frac{2}{{k - 1}}, and r =< \frac{n}{p} - \frac{2}{{k - 1}}( \leqslant 0)$$ and construct non-unique solutions for $$1< p< \frac{{n(k - 1)}}{2}< k + 1, and r< \frac{n}{p} - \frac{2}{{k - 1}}.$$ In the second part the well-posedness of the avove IVP for k=2 with μ0?H s (? n ) is proved if $$ - 1< s, for n = 1, \frac{n}{2} - 2< s, for n \geqslant 2.$$ and this result is then extended for more general nonlinear terms and initial data. By taking special values of r, p, s, and u0, these well-posedness results reduce to some of those previously obtained by other authors [4, 14].  相似文献   

20.
In this paper we consider a class of nonlinear elliptic problems of the type
$ \left\{ \begin{gathered} - div(a(x,\nabla u)) - div(\Phi (x,u)) = fin\Omega \hfill \\ u = 0on\partial \Omega , \hfill \\ \end{gathered} \right. $ \left\{ \begin{gathered} - div(a(x,\nabla u)) - div(\Phi (x,u)) = fin\Omega \hfill \\ u = 0on\partial \Omega , \hfill \\ \end{gathered} \right.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号