首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以均苯四甲酸酐、 D,L-苯丙氨酸和1,4-丁炔二醇为原料合成了一种含有酰亚胺环和炔基的二醇, 并以其为扩链剂, 采用预聚体法, 与4,4-二苯基甲烷二异氰酸酯(MDI)和聚四氢呋喃醚二醇(PTMG)反应, 合成了不同硬段含量的主链含有酰亚胺环和炔基的热塑性聚酰亚胺型聚氨酯弹性体. 用红外光谱(FTIR)、 电子拉力机、 热失重分析(TG)、 广角X射线衍射(XRD)、 UL-94垂直燃烧和极限氧指数对聚酰亚胺型聚氨酯弹性体进行了表征. 结果表明, 这种聚氨酯呈现出无定形结构; 其拉伸强度随着硬段含量的增加而增大; 与传统的热塑性聚氨酯相比, 酰亚胺环和炔基改性的聚酰亚胺型聚氨酯弹性体的热分解过程非常缓慢, 呈现出较好的热稳定性; 不同硬段含量的聚酰亚胺型聚氨酯弹性体的UL-94垂直燃烧均达到V-2级别; 其极限氧指数随着硬段含量的增加而增大.  相似文献   

2.
利用极限氧指数、UL-94垂直燃烧试验、锥形量热器、拉伸测试等手段研究了碱式硫酸镁晶须(MOS)填充阻燃乙烯-醋酸乙烯酯共聚物(EVA)的燃烧性能和力学性能,并与氢氧化镁(MH)填充阻燃EVA进行了比较。实验结果表明:MOS是一种性能优良的无卤阻燃剂。当填充量相等时,与EVA/MH相比,EVA/MOS具有更高的极限氧指数和UL-94垂直燃烧级别,更低的热释放速率、有效燃烧热和质量损失速率,以及更高的力学强度。  相似文献   

3.
有机磷阻燃改性水性聚氨酯   总被引:7,自引:0,他引:7  
以聚醚(N-210)、异佛尔酮二异氰酸酯(IPDI)为基本单体,[(双(2-羟乙基)氨基)甲基]磷酸二乙酯(FRC-6)、一缩二乙二醇(EX)为扩链剂,二羟甲基丙酸(DMPA)为亲水扩链剂,3-(2-氨乙基)氨丙基甲基二甲氧基硅烷(KH-602)为后扩链剂,合成了一系列有机磷(P)阻燃改性的水性聚氨酯乳液。研究表明:随着FRC-6用量的增加,聚氨酯(PU)的起始热分解温度降低,但热释放速率也降低,而PU的阻燃性能得到很大的提高。当FRC-6中P的含量占预聚体的质量分数为2.31%时,其氧指数为28%,垂直燃烧测试显示PU的阻燃性能已达到UL-94V-2级。  相似文献   

4.
六氯环三磷腈与对羟基苯甲醛经亲核取代反应制得六对醛基苯氧基环三磷腈(HAPCP);HAPCP经高锰酸钾氧化得六对羧基苯氧基环三磷腈(HCPCP);以苄基三乙基氯化铵为催化剂,HCPCP与环氧氯丙烷经开环闭环反应合成了一种新型的含磷环氧树脂(PN-EP),其结构和热稳定性经1H NMR,IR和TGA表征。结果表明,PN-EP的初始分解温度为278℃,在700℃时残炭量为40.5 wt%,具有很好的热稳定性和成炭性能。采用二氨基二苯甲烷对PN-EP进行固化,并通过极限氧指数(LOI)和垂直燃烧(UL-94)对其阻燃性能进行测试。结果表明:PN-EP固化物通过UL-94 V-0级测试,氧指数33%。  相似文献   

5.
以1,6-六亚甲基二异氰酸酯(HDI)为硬段、聚碳酸酯二元醇(PCDL)为软段、赖氨酸乙酯盐酸盐(Lys-OEt)作为扩链剂合成一种新型聚碳酸酯型聚氨酯弹性体.通过力学性能测试、原子力显微镜(AFM)、红外光谱分析和细胞培养,探讨了聚氨酯弹性体软硬段比例、扩链剂对材料性能的影响和材料的细胞毒性.结果表明:随着硬段含量的增加,聚氨酯的机械性能提高.采用Lys-OEt扩链的聚氨酯弹性体拉伸强度达到18.6 MPa,在Lys-OEt、1,4-丁二醇(BDO)、二羟甲基丙酸(DMPA)3种扩链剂中力学性能最佳.初步的细胞培养实验证明,该材料具有良好的细胞相容性.  相似文献   

6.
聚氨酯硬链段球晶生长与软硬链锻混容性的关系   总被引:4,自引:1,他引:3  
线型可溶性聚氨酯的硬链段结晶难以长成球晶 ,然而本实验室已经证明即使从熔体结晶硬链段也是能够长成球晶的 .研究了聚酯与聚醚型聚氨酯硬链段长球晶的规律 ,并发现聚氨酯硬链段长球晶的难易与聚氨酯软硬链段混容性密切相关 .动态力学分析 (DMA)与示差扫描量热 (DSC)实验表明聚ε 已内酯 (PCL)、聚已二酸丁二醇酯 (PTMA)、聚四氢呋喃 (PTMO)及聚环氧丙烷 (PPO)型聚氨酯的软硬链段混容性从前至后递减 .从熔体退火结晶时 ,聚氨酯硬链段长成球晶的退火温度范围是有限的 ,软硬链段混容性越好 ,聚氨酯硬链段能长成球晶的温度范围越窄 ,所需长的时间越长 .聚氨酯硬链段长球晶的下限温度取决于软硬链段间所存在的氢键作用 ,聚氨酯硬链段长球晶的上限温度与软硬链段混容性直接相关 .  相似文献   

7.
聚氨酯弹性体的摩擦性能在诸如船舶、汽车、生物医用等领域具有十分重要的意义,而通过化学修饰策略实现该类材料摩擦性能的精细设计,仍具有十分迫切的研究需求和广泛的应用前景。 本工作以对苯二异氰酸酯(PPDI)与聚四氢呋喃醚二醇(PTMG)为原料,通过调节1,4-丁二醇与三羟甲基丙烷两种扩链交联剂的混合比例,采用预聚体法合成了具备不同交联度的PPDI基聚氨酯弹性体。 其中,傅里叶变换衰减全反射光谱(FTIR-ATR)、广角X射线衍射(WAXD)、差示扫描量热仪(DSC)等表征结果表明,聚氨酯弹性体中硬段和软段的结晶度随交联度的提升均呈下降趋势。 同时,力学测试表明,材料的弹性模量随之降低,而PPDI基聚氨酯弹性体摩擦系数则明显增大。 此外,滞后回环曲线表明,交联度的改变影响了PPDI基聚氨酯弹性体的阻尼特性,而聚氨酯弹性体阻尼的差异在其摩擦性能对速率的依赖关系中则有所体现。 本工作由此提出,利用不同交联度下PPDI基聚氨酯中软硬段结晶度的变化,在对材料弹性模量和损耗模量进行可控调节的同时,能够实现对其摩擦性能的改变,为PPDI基聚氨酯弹性体的摩擦性能调控提供了一种简单有效的途径。  相似文献   

8.
以聚乳酸二醇、六次甲基二异氰酸酯和二溴新戊二醇设计合成出一系列阻燃型聚乳酸基聚氨酯。 通过核磁、凝胶色谱和红外等表征了材料的结构性能。 结果表明,二溴新戊二醇作为扩链剂可满足制备高相对分子质量聚氨酯的要求,材料的热学性能随聚乳酸二醇相对分子质量和硬段质量分数的增加而增加。 同时该类聚氨酯具有较好的力学性能,拉伸强度在50 MPa附近,接近工业级别的聚乳酸。 材料的阻燃性能随着溴质量分数的增加而增强。 当溴质量分数为8.6%,聚氨酯的极限氧指数(LOI)为28,属于难燃级别材料。  相似文献   

9.
本文研究了聚苯基膦酸二苯砜酯(PSPPP)对聚丁二酸丁二酯(PBS)的阻燃作用。研究发现,在PBS中仅添加4wt%的PSPPP,其垂直燃烧就可以达到UL-94 V-0级,极限氧指数达到34,PSPPP对PBS表现出高效阻燃作用。然而,PSPPP对PBS有促进降解的作用,破坏了PBS的力学性能。通过在PBS/PSPPP体系中添加0.5wt%氧化锌后,有效抑制了PBS的降解,力学性能得到改善。  相似文献   

10.
以双酚A型环氧树脂为基体、甲基纳迪克酸酐为固化剂、聚磷酸铵为膨胀阻燃剂、水热法制备的二氧化钛纳米管(TNTs)为阻燃协效剂,共混后交联固化制得了膨胀阻燃型环氧树脂复合材料。采用极限氧指数测试、垂直燃烧实验、扫描电镜和拉曼光谱分析了添加TNTs对环氧树脂膨胀阻燃材料的阻燃成炭协效作用。结果表明:TNTs的引入提高了环氧树脂膨胀阻燃材料的极限氧指数以及垂直燃烧UL-94测试评级。当TNTs质量分数为2%时,膨胀阻燃体系的极限氧指数达到28.4%,UL-94达到V-1级。同时,TNTs延缓了环氧树脂膨胀阻燃材料在高温下的热降解,提升了体系高温热稳定性和成炭性能。TNTs可以作为成炭的网络骨架,并促进高温下生成更多连续致密的炭层结构,且高温煅烧后残留的炭层具有更低的ID/IG(拉曼光谱在1 360cm-1及1 600cm-1处的吸收峰强度比)值,石墨化程度更高,炭层结构更加致密规整。  相似文献   

11.
The synthesis and properties of thermoplastic urethane-modified polyimides, based on different isocyanates, with different concentrations of hard segments and different ratios of imide and urethane groups, were studied. The effect of catalysts, isocyanates, and temperature was investigated on model reactions leading to formation of monoimides, bisimides, and polyimides. A polymer based on 2,4-TDI, poly(oxytetramethylene) glycol of 1000 molecular weight and pyromellitic dianhydride, with 75% of imide in the hard segments, retained about 50% of the original tensile strength at 120°C and about 30% at 150°C. Increasing the temperature up to 150°C had very little effect on the elongation of this copolymer. In general, increasing the imide concentration in the polymer structure provided better retention of stress-strain properties at elevated temperatures.  相似文献   

12.
A novel thermally stable thermoplastic poly(ester-ether) (PEE) elastomer containing imide units was prepared from poly(tetramethylene glycol) (PTMG1000), 1,4-butanediol (BD) and a new imide dicarboxylic acid based on pyromellitic dianhydride (PMDA) and glycine through a traditional chemical two-step method. The structures of the synthesized imide dicarboxylic acid and novel PEE were confirmed by FT-IR spectroscopy. The mechanical properties of the novel PEE were investigated. Thermal stability and thermal degradation kinetics of the novel PEE were investigated by thermogravimetric analysis (TGA) under different heating rates. The kinetic parameters of the degradation process were determined by using Kissinger, Flynn–Wall–Ozawa and Friedman methods. The Coats–Redfern method was also used to discuss the probable degradation mechanism of this PEE. The results showed that introduction of the imide units into the poly(ester-ether) endowed the PEE with excellent thermal stability and good mechanical properties. The activation energy obtained by using the Kissinger method was in agreement with that using the Flynn–Wall–Ozawa method. The reaction order (n) and pre-exponential factor (A) were obtained by using the Friedman method. Analysis of the experimental results suggests that the decomposition reaction mechanism of the PEE was a F3 type (random nucleation with three nuclei on the individual particle).  相似文献   

13.
A series of new poly(ether-ester-imide)s, PEEIs, was prepared from an imide dicarboxylic acid based on 1,4-diaminobutane and trimellitic anhydride. This imide dicarboxylic acid polycondensed with 1,4-dihydroxybutane formed the hard segments and poly(ethylene oxide), PEO-1000, or mixtures of PEO-1000 and poly(tetramethylene oxide), PTMO-1000, were used as soft segments. Whenever PTMO-1000 was used as comonomer, macrophase separation was observed at the end of the polycondensation. However, this macrophase separation had little influence on the mechanical properties. A poly(ether-esterimide), PEEI, containing neat PEO-1000 was characterized by dynamic mechanical thermoanalysis, stress-strain and hysteresis measurements, and by melt rheology. The mechanical properties were compared with those of an analogous PEEI containing neat PTMO-1000 and with those of a poly(ether-ester), PEE, based on poly(butylene terephthalate) hard segments and PTMO-1000.  相似文献   

14.
谭鸿  傅强 《高分子科学》2011,29(5):615-626
A series of fluorinated phosphatidylcholine polyurethane macromolecular additives were synthesized by solution polymerization using methylenebis(phylene isocyanates)(MDI) and 1,4-butanediol(BDO) as hard segments,a new phoshporycholine,2-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-hexadecafluoro-10-(2-hydroxyethoxy)decyloxy) ethyl phosphorycholine (HDFOPC) as end-capper,and four polydiols,poly(tetramethylene glycol)s(PTMG),polydimethylsiloxane(PDMS), poly(1,6-hexyl-1,5-pentylcarbonate)(PHPC) and poly(propylene glycol)(PPG) as soft segments,respectively.The chemical structures of the synthesized polyurethanes were characterized by ~1H-NMR and FTIR.DSC and DMA were employed to study the phase behavior of these novel polyurethanes due to their great influences on the surface properties,and hence their interactions with bio-systems.The results showed that phase separation of the fluorinated phosphatidylcholine end-capped polyurethanes was increased in comparison with that of normal polyurethanes.The effect of fluorinated phosphatidylcholine end-capped groups on the phase behavior was further demonstrated by analyzing the degree of hydrogen-bonding between hard and soft segments.  相似文献   

15.
A series of poly(ester-imide-ether), consisting of soft segments from poly(tetramethylene glycol) and N,N′-bis(2-carboxyethyl) pyromellitimide and hard segments based on 1,4-butanediol and N,N′-bis(2-carboxyethyl) pyromellitimide, were synthesized via the melt polycondensation. The chemical structures of the prepared elastomers were confirmed by Fourier transform infrared spectroscopy and 1HNMR, respectively. The results indicated that the introduction of aromatic bisimide groups endows the elastomers with excellent thermal stability and mechanical property, which increase with the increment of imide unit content in the prepared elastomers. Additionally, compared to the poly(ester-ether) elastomer, these poly(esterimide-ether) fibers displayed stronger tensile strength and better low-temperature elastic recovery property.  相似文献   

16.
A series of thermoplastic poly(ester-imide-ether) (PEIE) elastomers, with different ratios of soft/hard segment 85/15, 80/20 and 70/30, were prepared from 1, 4-butanediol (BD), poly(tetramethylene glycol) (PTMG) and imide dicarboxylic acid monomer based on 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) and glycine (GLY). The chemical structures of the imide dicarboxylic acid and PEIEs were characterized by FT-IR and 1H-NMR, respectively. The intrinsic viscosities, thermal properties and mechanical properties of these PEIEs were investigated. The results show that introduction of imide group endows the PEIEs with excellent thermal stability, the melting point of PEIEs at about 220°C, and the temperature of 5% weight loss appears at the range of 332–358°C. In addition, the mechanical properties of PEIEs are also improved with the increment of imide units, the maximum stress and strain reached to 17.15 MP and 1043.75%, respectively.  相似文献   

17.
Segmented poly(ester urethanes) were synthesized from oligomeric cellulose triacetate diols, poly(caprolactone)diols, and 1,6-hexamethylene diisocyanate. The effects of the molecular mass and structure of soft and hard segments of poly(ester urethanes) on their thermal behavior, mechanical properties, and degradation in aqueous solutions of a phosphate buffer were studied by DSC and IR spectroscopy. The combination of soft segments derived from poly(caprolactone)diols with M = (1.0–3.5) × 103, hard segments based on depolymerized cellulose triacetate with M = (2–4) × 103, and 1,6-hexamethylene diisocyanate makes it possible to synthesize poly(ester urethanes) with excellent mechanical characteristics. The degree of crystallinity of these polymers increases with a decrease in the molecular mass of the depolymerized cellulose triacetate block in the hard segment. As the soft segment lengthens, phase separation between domains of soft and hard segments becomes more pronounced. Upon incorporation of poly(ethylene glycol) blocks into the soft segments of poly(ester urethanes), their hydrophobicity is enhanced and biodegradability is accelerated.  相似文献   

18.
The novel poly(ester-ether-imide)s (PEEIs) were synthesized by 1, 6-hexanediol (HD), poly(tetramethylene glycol) (PTMG1000) and imide dicarboxylic acid was prepared from 1,2,4-trimellitic anhydride (TMA) and 4,4′-oxydianiline (ODA) by the traditional chemical two-step method. The structures of synthesized imide dicarboxylic acid and poly(ester-ether-imide)s were confirmed by FT-IR and 1H-NMR spectroscopy, respectively. The intrinsic viscosities, thermal properties, dynamic mechanical properties, mechanical properties and solubility of these polymers were characterized. The results indicate that these polymers have good solubility, exhibit excellent thermal stability owing to the introduction of imide units, and the tensile strength of PEEIs increases with increasing the number of imide groups while maintaining the good elasticity of the polymers.  相似文献   

19.
A novel poly(ester-ether-imide) (PEEI) based on N′,N-bis(2-hydroxyethyl)-pyromellitimide unit was synthesized via a conventional two-stage procedure with 1,4-butanediol (BD), dimethyl terephthalate (DMT) and poly(tetramethylene glycol) (PTMG1000). The structures of imide dihydric alcohol and PEEI were confirmed by FT-IR and 1H-NMR spectra, respectively. The thermal properties and mechanical properties were investigated. The results show PEEI possesses good mechanical properties and excellent thermal stability with the 5% weight loss temperature of the PEEI at 367.3°C, and melting temperature of hard segments (Tmh) at 209.7°C. In addition, the kinetic parameters of thermal degradation of the PEEI were studied by thermogravimetric analysis (TGA) at different heating rates. The activation energy of the solid-state process was determined to be 174.83 and 175.83 kJ/mol using Kissinger and Flynn–Wall–Ozawa methods, respectively. The degradation mechanism model of PEEI was determined bythe Coats-Redfern method. Compared with the values obtained from the Kissinger and Flynn–Wall–Ozawa methods, the actual reaction mechanism of the novel PEEI is a F1 type (Random nucleation with one nucleus on the individual particle nucleation) and growth model with integral g(a)=?ln(1?a)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号