首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate adiabatic wavelength shifting by electro-optic modulation, using a p-i-n integrated high-Q photonic crystal nanocavity. The wavelength of the trapped light is adiabatically shifted by modulating the resonance of the cavity faster than the photon lifetime. The cavity resonance is changed by injecting electrons through a p-i-n junction to reduce the refractive index. In addition, we employ adiabatic wavelength shifting in a demonstration of dynamic Q tuning by electro-optic modulation.  相似文献   

2.
The exact calculation of mode quality factor Q is a key problem in the design of high-Q photonic crystal nanocavity. On the basis of further investigation on conventional Pade approximation, FDM and DFT, Pade approximation with Baker’s algorithm is enhanced through introducing multiple frequency search and parabola interpolation. Though Pade approximation is a nonlinear signal processing method and only short time sequence is needed, we find the different length of sequence requirements for 2D and 3D FDTD, which is very important to obtain convergent and accurate results. By using the modified Pade approximation method and 3D FDTD, the 2D slab photonic crystal nanocavity is analyzed and high-Q multimode can be solved quickly instead of large range high-resolution scanning. Monitor position has also been investigated. These results are very helpful to the design of photonic crystal nanocavity devices.  相似文献   

3.
Local information on the coupling mechanism between the photonic crystal nanocavity and the feeding waveguide is crucial to enable further improvements of the performance of these systems. Although several investigations on such a coupling have already been performed, information on the local dynamic properties remains hidden. Here, we present a reciprocal space investigation of the dynamics of light side-coupled to a photonic crystal nanocavity. We find that the coupling is promoted by Bloch harmonics having greater transverse momentum.  相似文献   

4.
We theoretically investigate controlled tunable all-optical filtering and buffering of optical pulses in a hybrid nano-photonic structure, where a single quantum dot (QD) embedded in a photonic crystal nanocavity is sidecoupled between a bare nanocavity and a photonic crystal waveguide. We demonstrate that there is a sharp low-loss transmission peak in the transmission spectrum under even low QD-nanocavity coupling strength and the input optical pulses can be delayed up to several hundred picoseconds within the dephasing time of the QD. The filtering regime can be shifted readily by manipulating the detuning between the QD excitonic transition frequency and resonant frequency of the nanocavity mode, which can be explored in future for on-chip all-optical logic and signal processing.  相似文献   

5.
In this paper, a novel biosensor based on hetero photonic crystal (PC) structures is proposed. The biosensor consists of photonic crystals with negative refraction (PCNR) embedded between two ordinary PC structures. The PCNR is employed in order to produce an image that is as similar as the light source, which is located in the first ordinary PC. Significant enhancement of the image is achieved when a nanocavity is introduced into the PCNR. It is found that the transmission peak shifts when the nanocavity is filled with blood plasma, liquid and dry air. It is shown that by careful selection of the radius of the nanocavity, the sensitivity of the proposed biosensor can be enhanced. The presented PCNR biosensor is investigated by employing the finite-difference time-domain method (FDTD).  相似文献   

6.
The single and coupled photonic crystal nanocavity lasers are fabricated in the InGaAsP material system and their static and dynamic features are compared. The coupled-cavity lasers show a larger lasing efficiency and generate an output power higher than the single-cavity lasers, results that are consistent with the theoretical results obtained by rate equations. In dynamic regime, the single-cavity lasers produce pulses as short as 113 ps,while the coupled-cavity lasers show a significantly longer lasing duration. These results indicate that the photonic crystal laser is a promising candidate for the light source in high-speed photonic integrated circuit.  相似文献   

7.
We report the enhancement of sub-bandgap photoluminescence from silicon via the Purcell effect. We couple the defect emission from silicon, which is believed to be due to hydrogen incorporation into the lattice, to a photonic crystal (PhC) nanocavity. We observe an up to 300-fold enhancement of the emission at room temperature at 1550 nm, as compared to an unpatterned sample, which is then comparable to the silicon band-edge emission. We discuss the possibility of enhancing this emission even further by introducing additional defects by ion implantation, or by treating the silicon PhC nanocavity with hydrogen plasma.  相似文献   

8.
Lu TW  Lin PT  Lee PT 《Optics letters》2012,37(4):569-571
We theoretically propose and investigate a TM-polarized one-dimensional photonic crystal nanocavity with a horizontal SiO2 slot on a suspended silicon nanobeam via the three-dimensional finite-element method. The ultrahigh quality factor and ultrasmall effective mode volume of 1.5×10(7) and 0.176 half-wavelength cubic of the horizontally SiO2-slotted nanocavity show strong possibilities for realizing an erbium-doped SiO2 nanolaser. This horizontal SiO2 slot structure can be precisely formed via the sputtering process and further transformed into an air slot via selective wet etching for optical index and biomolecule sensing.  相似文献   

9.
研究了以InAs量子点为有源区的二维GaAs基光子晶体微腔的设计与制作,测试并分析了室温下微腔的光谱特性.观察到了波长约为1137 nm,谱线半高宽度约为1 nm的尖锐低阶谐振模式发光峰.我们比较了不同刻蚀条件下光子晶体微腔的发光谱线,结果表明空气孔洞截面的垂直度是影响光子晶体微腔发光特性的重要因素之一.通过调节干法刻蚀工艺,改变空气孔半径与晶格常数的比率,可以在较大范围内调节谐振模式发光峰位置,达到谐振模式与量子点发光峰调谐的目的.  相似文献   

10.
The image depicts a silicon photonic crystal nanocavity light emitting diode, which operates in the 1300–1600 nm wavelength range. The emission is based on defect luminescence. The optically active defects, shown in the inset, are created by hydrogen plasma treatment. The emission from these defects is strongly enhanced by the photonic crystal cavity. (Picture: A. Shakoor et al. 10.1002/lpor.201200043 , pp. 114–121, in this issue)  相似文献   

11.
Kim SH  Huang J  Scherer A 《Optics letters》2012,37(4):488-490
A photonic crystal (PhC) nanocavity formed in an optically very thick slab can support reasonably high-Q modes for lasing. Experimentally, we demonstrate room-temperature pulsed lasing operation from the PhC dipole mode emitting at 1324 nm, which is fabricated in an InGaAsP slab with thickness (T) of 606 nm. Numerical simulation reveals that when T≥800 nm, over 90% of the laser output power couples to the PhC slab modes, suggesting a new route toward an efficient in-plane laser for photonic integrated circuits.  相似文献   

12.
Hughes S 《Optics letters》2005,30(11):1393-1395
A theoretical quantum-optical study of the modified spontaneous emission dynamics from a single quantum dot in a photonic crystal nanocavity is presented. By use of a photon Green function technique, enhanced single-photon emission and pronounced vacuum Rabi flops are demonstrated, in qualitative agreement with recent experiments.  相似文献   

13.
Recent advances in quantum dots (QDs) for classical and non-classical light sources are presented. We have established metal organic chemical vapor deposition (MOCVD) technology for InAs-based QD lasers at 1.3 μm and achieved ultralow threshold in QD lasers with photonic crystal (PhC) nanocavity. In addition, single photon emitters at 1.55/μm, GaN-based single photon sources operating at 200 K, and high-Q PhC nanocavity have been demonstrated.  相似文献   

14.
《中国物理 B》2021,30(6):64209-064209
Silicon-based electro-optic modulators are the key devices in integrated optoelectronics. Integration of the graphene layer and the photonic crystal(PC) cavity is a promising way of achieving compact modulators with high efficiency. In this paper, a high-quality(Q) acceptor-type PC nanocavity is employed to integrate with a single-layer graphene for realizing strong modulation. Through tuning the chemical potential of graphene, a large wavelength shift of 2.62 nm and a Q factor modulation of larger than 5 are achieved. A modulation depth(12.8 dB) of the reflection spectrum is also obtained.Moreover, the optimized PC nanocavity has a large free spectral range of 131.59 nm, which can effectively enhance the flexibility of the modulator. It shows that the proposed graphene-based PC nanocavity is a potential candidate for compact,high-contrast, and low-power absorptive modulators in integrated silicon chips.  相似文献   

15.
We demonstrate extremely low-power all-optical bistability by utilizing silicon photonic crystal nanocavities, based on the plasma effect of carriers generated by two-photon absorption. Owing to the high quality factor and the small volume of the nanocavities, the photon density inside the cavity becomes extremely high, which leads to a large reduction in operation power. Optical bistable operation in a single nanocavity permits optical read-write memory operation, which opens the possibility of an integrated optical logic circuit on a single chip, based on photonic crystals. The demonstrated bistable threshold power is 0.4 mW with a set pulse energy of 74 fJ, at a switching speed of <100 ps.  相似文献   

16.
Using a micromanipulation technique, a planar photonic crystal nanocavity made from a thin semiconductor membrane is released from the host semiconductor and attached to the end facet of a standard single-mode optical fiber. The cavity spectrum can be read out through the fiber by detecting the photoluminescence of embedded quantum dots. The modified fiber end serves as a fiber-optic refractive index sensor.  相似文献   

17.
We investigate light transmission obtained from a three-level V-type emitter embedded in a waveguide-coupled two-mode photonic crystal nanocavity operating in the weak-coupling regime. It is shown that the composite system exhibits double electromagnetically-induced-transparency-like characteristics and a π phase shift while not suffering from absorption in the experimentally available parameter range. The double-frequency transparency of the input light expands the frequency range of EIT and may improve the controllability of EIT. The proposed scheme also provides a way to achieve integrated photonic devices on a chip for applications requiring multiple EIT effect.  相似文献   

18.
We propose silicon nitride two-dimensional photonic crystal resonators as flexible platform to realize photonic devices based on spontaneous emission engineering of nanoemitters in the visible spectral range. The versatility of our approach is demonstrated by coupling the two dipole-like modes of a closed band gap H1 nanocavity with: (i) DNA strands marked with Cyanine 3 organic dyes, (ii) antibodies bounded to fluorescent proteins and (iii) colloidal semiconductor nanocrystals localized in the maximum of the resonant electric field. The experimental results are in good agreement with the numerical simulations, highlighting the good coupling of the nanocavities with both organic and inorganic light emitters.  相似文献   

19.
Lin H  Yi Z  Hu J 《Optics letters》2012,37(8):1304-1306
We propose and theoretically examine a novel mid-infrared (mid-IR) photothermal spectroscopic sensing technique capable of detecting a single small molecule. Our conceptual design attains such high sensitivity by leveraging dramatically amplified photothermal effects in an optical nanocavity doubly resonant at both mid-IR pump and near-IR probe wavelengths. Unlike conventional mid-IR spectroscopy, the technique eliminates the need for cryogenically cooled mid-IR photodetectors, as optical detection is performed solely at the near-IR probe wavelength. A device design based on nested one-dimensional nanobeam photonic crystal cavities is numerically analyzed to demonstrate the technique's potential for single small gas molecule detection.  相似文献   

20.
We describe recent progress in photonic crystal nanocavity lasers with an emphasis on our recent results on ultrafast pulse generation. These lasers produce pulses on the picosecond scale, corresponding to only hundreds of optical cycles. We describe laser dynamics in optically pumped single cavities and in coupled cavity arrays, at low and room temperature. Such ultrafast, efficient, and compact lasers show great promise for applications in high‐speed communications, information processing, and on‐chip optical interconnects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号