首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 302 毫秒
1.
研究了一种能够同时产生C波段和X波段微波、具有双电子束结构的相对论返波振荡器,采用嵌套式的高频结构将两个波段的束-波相互作用空间隔离开来,从而使两个波段的束-波相互过程互不影响。当二极管电压为650kV、内外环形电子束流分别为5.4,6.4kA、导引磁场为2.2T时,两个波段微波的频率分别为4.625,8.450GHz,模拟产生的微波功率分别为920,600MW,转换效率约为21.8%,17.1%。并采用粒子模拟法研究了导引磁场、二极管电压及两个束-波相互作用区关键结构参数对器件运行的影响,给出了双波段微波功率、频率随导引磁场、二极管电压等参数的变化曲线。  相似文献   

2.
L波段相对论返波振荡器初步实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
设计了一个紧凑型L波段相对论返波振荡器(RBWO),利用Karat 2.5维全电磁粒子模拟程序研究了器件内部束-波作用的物理过程。模拟结果表明:在二极管电压700 kV、电子束流10 kA、导引磁场为1.0 T时,能实现L波段2.23 GW高功率微波输出,平均效率约为31.8%。为验证模拟结果,在高阻加速器平台上进行了初步实验:当二极管电压为703 kV、电流10.6 kA、导引磁场为0.8 T时,实验获得了峰值功率1.05 GW、频率1.61 GHz、脉宽38 ns的高功率微波输出,其功率效率为14.4%。  相似文献   

3.
内导体对相对论返波振荡器工作波段选择的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
 设计了一种紧凑型、GW级同轴引出电子束相对论返波振荡器,利用KARAT 2.5维全电磁粒子模拟程序研究了器件内部束 波作用的物理过程。模拟结果表明:当器件中使用内导体,在电子束能量700 keV,电子束流11 kA,导引磁场为1.0 T时,能实现L波段2.66 GW高功率微波输出,平均效率约为34%;去掉内导体时,能实现S波段1.88 GW单频微波输出,平均效率约为24%。同一个器件,仅通过装卸内导体就可以选择在两个波段实现GW级、高效微波输出,这对于高功率微波器件的设计有一定的参考意义。  相似文献   

4.
紧凑型L波段同轴相对论返波振荡器的粒子模拟   总被引:1,自引:4,他引:1       下载免费PDF全文
 设计了紧凑型L波段同轴相对论返波振荡器,通过粒子模拟研究了L波段同轴相对论返波振荡器相互作用的物理过程,并对器件的电磁结构进行了优化和改进。分析表明,采用同轴慢波结构可以在较低的外加磁场下实现L波段返波振荡器的微波输出,同时可以大大减小微波器件的径向尺寸。这是因为同轴慢波结构的TM01模式有类似于TEM模的性质,没有截止频率,但纵向电场不为零,电子束能够与它发生强相互作用过程。粒子模拟优化结果表明,在器件半径仅为4.0 cm,电子束能量240 keV,电子束流1.8 kA,导引磁场仅为0.75 T时,返波振荡器可以在频率1.60 GHz处获得较大功率的微波输出, 平均峰值功率达140 MW,平均峰值功率效率约为32%。  相似文献   

5.
 利用傅里叶级数展开,给出了一种求解梯形慢波结构表达式的方法。通过数值模拟,研究了级数展开次数对求解精度的影响。当级数为10阶时,线型拟合而成的结构与原结构吻合较好。利用此表达式数值求解了色散方程,得到两个最低阶模quasi-TEM模和A 模。分析了为实现电子束与quasi-TEM模的-1次空间谐波相互作用慢波结构参数所需满足的条件,并指出利用此条件下纵向电场具有表面波的特点可实现横向模式选择。采用S参数理论研究有限长慢波结构的纵向谐振特性,提出在同轴慢波器件中加入同轴引出结构可减少所需慢波结构周期数,这不但使器件结构更为紧凑,还可避免纵模竞争从而提高器件效率、稳定产生微波频率。在此基础上设计了一种L波段同轴相对论返波振荡器,采用KARAT 2.5维全电磁粒子模拟程序研究了器件内束-波作用的物理过程。模拟结果表明,该器件具有径向尺寸小、束-波作用效率高的特点。在电子束能量700 keV、电子束流11.5 kA的条件下,器件在频率1.6 GHz处获得较高的微波输出,饱和后微波的平均功率达2.60 GW,平均效率约为32.3%。  相似文献   

6.
无外加引导磁场相对论返波振荡器粒子模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
设计了一种无外加引导磁场S波段相对论返波振荡器,采用阳极网提取电子,并设计了非均匀慢波结构。通过Karat 2.5维全电磁粒子模拟程序研究了器件内束-波作用的物理过程。典型模拟结果为:当二极管工作电压330 kV、电流2.83 kA时,器件在频率2.79 GHz处获得较高的微波输出,经27 ns后饱和,输出微波的功率达158 MW,效率约为16.8%。  相似文献   

7.
 用理论和粒子模拟相结合的方法分析了强流薄环形相对论电子束在低磁场导引下,在均匀波导,无箔二极管,以及锥形波导和渐减磁场位形条件下的传输过程,研究了束包络的波动和如何减少波动的问题。分析表明:在无箔二极管中一个适当渐增的磁场位形可以有效地抑制束电子的径向运动,从而减少电子在波导中的波动幅度;电子束在锥形波导和渐减磁场位形中运动,不会增加束电子的波动。因此适当的磁场位形可以降低微波器件对导引磁场的要求,有利于实现永磁包装微波器件。  相似文献   

8.
紧凑型P波段相对论返波振荡器的粒子模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
 设计了一种紧凑型P波段相对论返波振荡器,其电动力学结构是由同轴慢波结构和同轴引出结构组成的。同轴慢波结构缩小了器件的径向尺寸;同轴引出结构缩短了器件的轴向长度,且提高了束波作用效率。通过粒子模拟研究了器件内束波作用的物理过程,模拟结果表明:器件具有结构紧凑、束波作用效率高的特点。在二极管电压700 kV,电流7 kA,导引磁场1.5 T时,器件在频率833 MHz处获得较高的微波输出,饱和后输出微波的平均功率达1.58 GW,效率约为32%,器件电磁结构尺寸仅为108 mm×856 mm。  相似文献   

9.
L波段同轴相对论返波振荡器导引磁场设计   总被引:1,自引:1,他引:0       下载免费PDF全文
设计了一个用于为L波段同轴相对论返波振荡器提供导引磁场的双线绕制、分段磁场线圈系统。根据粒子模拟中对磁场的要求和实验室已有的条件来确定磁场的各参数,通过数学软件Mathcad和全电磁粒子模拟程序Karat对设计出的轴向磁场位形进行验证。采用基于Hall效应的Tesla计对加工好的磁场线圈产生轴向磁场空间分布进行了测量,同时利用电子束轰击尼龙靶来考察电子束被导引的效果。利用绕制好的磁场线圈开展了初步实验研究,在二极管电压655kV,电子束流为10.4kA,导引磁场0.7T的条件下,输出微波峰值功率约为864MW,微波波形半高宽为23ns,功率转换效率约为12.7%,频率1.61GHz。  相似文献   

10.
吴洋  金晓  马乔生  李正红  鞠炳全  苏昶  许州  唐传祥 《物理学报》2011,60(8):84101-084101
根据两腔振荡器和返波管的特点研制了过模结构返波振荡器, 该器件主要由调制腔和换能腔(慢波结构)两部分组成. 调制腔既是电子束的预调制腔, 也是微波谐振反射腔, 它同换能腔形成一个过模微波谐振腔,经调制腔调制后的电子束在换能腔中实现束波能量转换. 根据加速器的电子束参数(束压为1 MV,束流为20 kA)设计了一个X波段的高功率微波器件,2.5维粒子模拟程序模拟得到微波频率为8.25 GHz,输出功率为5.70 GW. 用超导磁体作为引导磁场,单次运行输出微波功率为5.20 GW,微波频率为(8.25±0. 关键词: 两腔振荡器 返波振荡器 多波切连科夫发生器  相似文献   

11.
L波段双频磁绝缘线振荡器的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
根据角向分区产生双频率高功率微波(HPM)的设计思路,开展了基于谐振腔深度角向分区模型的L波段双频磁绝缘线振荡器(BFMILO)的实验研究,建立了BFMILO的实验系统和测量系统,热测了BFMILO的辐射方向图,通过辐射场功率密度积分得到了输出微波的功率.在电子束电压约为420kV,管电流约为34kA的条件下,L波段BFMILO输出的微波频率分别为1.26GHz和1.45GHz,对应的微波功率分别为398MW和222MW.并初步得到了谐振腔深度的角向分区比例不同的BFMILO的初步实验结果.实验研究得到了 关键词: 角向分区 磁绝缘线振荡器(MILO) 双频MILO(BFMILO) 高功率微波(HPM)  相似文献   

12.
秦奋  王冬  陈代兵  文杰 《物理学报》2012,61(9):94101-094101
根据磁绝缘线振荡器(magnetically insulated transmission line oscillator, MILO)中基模(TM00模)与临近高阶模(HEM11模)高频场分布的区别,采用破坏各腔之间HEM11模π 模谐振条件的方式抑制器件中高阶模产生的方法,提出了高阶模抑制型MILO. 运用三维全电磁粒子模拟软件对高阶模抑制型L波段MILO器件进行模拟研究, 数值模拟结果表面该方法能够抑制器件中HEM11模的产生.在此基础上对器件进行了对比性实验研究, 实验结果表明高阶模抑制型器件能够抑制HEM11模的产生,稳定工作在基模.  相似文献   

13.
紧凑型L波段磁绝缘线振荡器的实验设计   总被引:2,自引:3,他引:2       下载免费PDF全文
 设计加工了一个L波段磁绝缘线振荡器(MILO),并进行了实验研究。在二极管电压为515~538kV, 二极管电流为58~61kA的条件下, 获得了频率为1.76~1.78GHz,功率为2.2~2.5GW的TM01模高功率微波辐射, 功率转换效率为7.3%~7.9%。实验结果与模拟结果符合得较好。  相似文献   

14.
对L波段双阶梯阴极磁绝缘线振荡器(MILO)进行了粒子模拟,在输入电压710 kV,电流56.6kA条件下,得到微波输出功率为4.8 GW,微波频率1.22 GHz。根据模拟结果设计MILO实验装置并开展实验研究,介绍了测试方法与测试系统,并对辐射微波功率、频率和模式进行了测量。在二极管电压740 kV,电流61 kA条件下,测得辐射微波功率为3.57 GW,微波脉宽46 ns,微波频率1.23 GHz,功率转换效率8%,辐射微波模式为TM01模。  相似文献   

15.
L波段双频磁绝缘线振荡器的设计与粒子模拟   总被引:10,自引:10,他引:0       下载免费PDF全文
 提出了利用角向分区来产生双频高功率微波的思想,并根据常规磁绝缘线振荡器的互作用主要在轴向而与角向无关的物理机制,通过在常规磁绝缘线振荡器内设置谐振腔深度的角向分区,建立了L波段双频磁绝缘线振荡器的模型,并利用电磁模拟软件,优化设计了L波段双频磁绝缘线振荡器。粒子模拟的结果为:在电子束电压为530 kV,电流为45.5 kA的条件下,得到了稳定的双频高功率微波输出,其微波频率分别为1.28 GHz和1.50 GHz,周期平均功率约为2.65 GW,功率效率约为11%,两个频率的频谱幅度相差约0.4 dB。  相似文献   

16.
低频段紧凑型同轴相对论返波振荡器   总被引:2,自引:2,他引:0       下载免费PDF全文
基于P波段新型三周期慢波结构同轴相对论返波振荡器设计思想,设计了一个L波段同轴相对论返波振荡器。粒子模拟表明,在二极管电压591 kV、电流8.2 kA、导引磁场0.8 T时,获得了1.50 GW的微波输出,频率为1.64 GHz,效率达31%,器件慢波结构尺寸仅为f96 mm207 mm。分析了该器件实际高频结构的电动力学特性,重点研究了纵向谐振模式、品质因数等特点,并结合P波段的研究结果,得到了该类器件的相关设计指标:慢波结构长度约为一个波长,波纹周期约5/13波长,外波纹深度约1/10波长,内波纹深度约1/30波长,电子束半径约0.7倍外波纹平均半径,器件的纵向工作模式为0.8模,对应的Q值约16。  相似文献   

17.
L波段磁绝缘线振荡器一体化辐射天线   总被引:2,自引:2,他引:0       下载免费PDF全文
 根据小型化的要求,提出了可以用于小型化L波段磁绝缘线振荡器的一体化辐射天线的模型,即介质+插板移相型模式变换器,该模型可以有效缩短模式变换器的物理长度,并基于该模型研究了一体化辐射天线的方向图、增益、物理长度等特性,初步优化设计了一体化辐射天线,为结构紧凑的小型化磁绝缘线振荡器的研究提供了方便。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号