首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferromagnetic Ga1−xMnxAs epilayers with Mn mole fraction in the range of x≈2.2-4.4% were grown on semi-insulating (100) GaAs substrates using the molecular beam epitaxy technique. The transport properties of these epilayers were investigated through Hall effect measurements. The measured hole concentration of Ga1−xMnxAs layers varied from 4.4×1019 to 3.4×1019 cm−3 in the range of x≈2.2-4.4% at room temperature. From temperature dependent resisitivity data, the sample with x≈4.4% shows typical behavior for insulator Ga1−xMnxAs and the samples with x≈2.2 and 3.7% show typical behavior for metallic Ga1−xMnxAs. The Hall coefficient for the samples with x≈2.2 and 4.4% was fitted assuming a magnetic susceptibility given by Curie-Weiss law in a paramagnetic region. This model provides good fits to the measured data up to and the Curie temperature Tc was estimated to be 65, 83 K and hole concentration p was estimated to be 5.1×1019, 4.6×1019 cm−3 for the samples with x≈2.2 and 4.4%, respectively, confirming the existence of an anomalous Hall effect for metallic and insulating samples.  相似文献   

2.
We have performed a first-principle Full Potential Linearized Augmented Plane Waves calculation within the local density approximation (LDA) to the zinc-blende AlxGa1−xAs1−yNy to predict its optical properties as a function of N and Al mole fractions. The accurate calculations of electronic properties such as band structures and optical properties like refractive index, reflectivity and absorption coefficient of AlxGa1−xAs and AlxGa1−xAs1−yNy with x≤0.375 and y up to 4% are presented. AlxGa1−xAs on GaAs have a lattice mismatch less than 0.16% and the lattice constant of AlxGa1−xAs has a derivation parameter of 0.0113±0.0024. The band gap energies are calculated by LDA and the band anticrossing model using a matrix element of CMN=2.32 and a N level of EN=(1.625+0.069x) eV. The results show that AlxGa1−xAs can be very useful as a barrier layer in separate confinement heterostructure lasers and indicate that the best choice of x and y AlxGa1−xAs1−yNy could be an alternative to AlxGa1−xAs when utilized as active layers in quantum well lasers and high-efficiency solar cell structures.  相似文献   

3.
In order to design the optimal component structure of transmission-mode (t-mode) Ga1−xAlxN photocathode, the optical properties and quantum efficiency of Ga1−xAlxN photocathodes are simulated. Based on thin film principle, optical model of t-mode Ga1−xAlxN photocathodes is built. And the quantum efficiency formula is put forward. Results show that Ga1−xAlxN photocathodes can satisfy the need of detectors with “solar blind” property when the Al component is bigger than 0.375. There is an optimal thickness of Ga1−xAlxN layer to get highest quantum efficiency, and the optimal thickness is 0.3 μm. There is close relation between absorptivity and quantum efficiency, which is in good agreement with the “three-step” model. This work gives a reference for the experimental research on the Ga1−xAlxN photocathodes.  相似文献   

4.
A series of phosphors with the composition Y3−xMnxAl5−xSixO12 (x=0, 0.025, 0.050, 0.075, 0.150, 0.225, 0.300) were prepared with solid state reactions. The X-ray powder diffraction analysis of samples shows that the substitution of Mn2+ and Si4+ does not change the garnet structure of phosphors, but makes the interplanar distance decrease to a certain extent. The emission spectra show that Mn2+ in Y3Al5O12 emits yellow-orange light in a broad band. With the increment of substitution content, the emission intensity of the phosphors increases firstly then decreases subsequently, and the emission peak moves to longer wavelength. Afterglow spectra and decay curves show that all the Mn2+ and Si4+ co-doped samples emit yellow-orange light with long afterglow after the irradiation of ultraviolet light. The longest afterglow time is 18 min. Thermoluminescence measurement shows that there exist two kinds of traps with different depth of energy level and their depth decreases with the increment of substitution content.  相似文献   

5.
Treatment of GaN with SiH4 and NH3 increases the size of surface pits associated with threading dislocations, allowing them to be easily imaged by atomic force microscopy. Here, we assess the effect of a similar treatment on AlxGa1−xN surfaces for x ≤ 0.4. For relaxed AlxGa1−xN epilayers, an increase in the observed size and density of threading dislocation pits is observed. However, if the AlxGa1−xN is under tensile strain, the treatment results in the appearance of nanometre-scale surface hillocks. These hillocks may prevent observation of the dislocation pits. The hillocks are found to consist of crystalline AlxGa1−xN, and hence are suggested to be formed by strain driven etching or transformation of the surface by SiH4 and NH3.  相似文献   

6.
We have investigated the temperature and composition dependent photoluminescence (PL) spectra in Ga1−xMnxN layers (where x ≈ 0.1-0.8%) grown on sapphire (0 0 0 1) substrates using the plasma-enhanced molecular beam epitaxy technique. The efficient PL is peaked in the red (1.86 eV), yellow (2.34 eV), and blue (3.29 eV) spectral range. The band-gap energy of the Ga1−xMnxN layers decreased with increasing temperature and manganese composition. The band-gap energy of the Ga1−xMnxN layers was modeled by the Varshni equation and the parameters were determined to be α = 2.3 × 10−4, 2.7 × 10−4, 3.4 × 10−4 eV/K and β = 210, 210, and 230 K for the manganese composition x = 0.1%, 0.2%, and 0.8%, respectively. As the Mn concentration in the Ga1−xMnxN layers increased, the temperature dependence of the band-gap energy was clearly reduced.  相似文献   

7.
A series of phosphors with the composition Y3MnxAl5−2xSixO12 (x=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6) was prepared through solid state reactions. X-ray powder diffraction analysis of samples shows that when co-doping content does not exceed 16% of Al3+, equimolar co-doping of Mn2+ and Si4+ does not change the garnet structure of phosphors, but makes the interplanar distance to decrease a certain extent. However, if the co-doping content exceeds 16%, new phases will form in the samples. The excitation and emission spectra of samples show that Mn2+ in Y3MnxAl5−2xSixO12 emits broadband orange light (peak wavelength varies from 586 to 593 nm). With an increment in co-doping content, the emission intensity of the phosphors increases when the value of x is lower than 0.1 while it decreases when it is higher than 0.1 and the emission peak moves to a longer wavelength.  相似文献   

8.
The influences of chemical treatment and thermal annealing of AlxGa1−xN (x = 0.20) have been investigated by X-ray photoelectron spectroscopy (XPS). XPS analysis showed that successive chemical treatments and annealing produced changes in the stoichiometry of the AlxGa1−xN surface, with the surface concentration of N increasing and Al and Ga decreasing with increasing temperature. Band bending occurred at the AlxGa1−xN surface, in parallel with the observed changes in stoichiometry. These results are discussed in the context of the creation of surface states via the activation of vacancies and induced by defects. These findings point towards the possibility of selecting and/or engineering the band structure at AlxGa1−xN surfaces through a combination of surface preparation and annealing.  相似文献   

9.
The magnetic properties of Y2Fe17−xGax for 3≤x≤7 and Gd2Fe17−xGax for 5≤x≤7 have been investigated using 57Fe Mössbauer spectroscopy. These compounds have the rhombohedral Th2Zn17 structure. X-ray diffraction analysis of aligned powders shows that the easy direction of magnetization is parallel to the c-axis in Y2Fe10Ga7 and Gd2Fe10Ga7 and is perpendicular to the c-axis in Y2Fe14Ga3, Y2Fe12Ga5, Gd2Fe12Ga5 and Gd2Fe11Ga6. Mössbauer studies indicate that those samples are ordered ferromagnetically. The 57Fe hyperfine field decreases with increasing Ga content. This decrease results from the decreased magnetic exchange interactions resulting from Ga substitution. The average isomer shift, δ, for R2Fe17−xGax (R=Y and Gd) at room temperature is positive and the magnitude of δ increases with increasing Ga content.  相似文献   

10.
Electron paramagnetic resonance (EPR) investigations has been carried out on the new family of molybdenum doped vanadium sesquioxides (V1−xMox)2−δO3. The oxidation effects were monitored from the rate of paramagnetic V4+ created when the sample is exposed to the air. The effects of the oxidation time, sample temperature, and annealing at 1000 °C under a diluted hydrogen atmosphere on the EPR signal features are analyzed. The V4+ concentration in the oxidized samples is determined and the relaxation effects driven by the conduction electrons are pointed out from the thermal behaviour of the EPR line features. EPR spectra of all the oxidized samples also reveal a small ferromagnetic contribution strongly correlated with the V4+ content.  相似文献   

11.
Oxidative (δ>0) nonstoichiometry in the perovskite ‘LaMnO3+δ’ has been known to be manifested not with O interstitials but rather with cation vacancies of equal amounts at the two cation sites, La and Mn, i.e. La1−xMn1−yO3 with x=y. Here, we report the fabrication of samples with record-high cation-vacancy concentrations (x>0.12 or δ>0.4) by means of a variety of high-pressure oxygenation techniques. Linear (negative) dependence of the cell volume on x was observed within the whole x range investigated, down to 56.9 Å3 (per formula unit) for a sample oxygenated at 5 GPa and 1100 °C using Ag2O2 as an excess oxygen source. With increasing degree of cation deficiency in La1−xMn1−xO3, the ferromagnetic transition temperature was found to follow a bell shape with respect to x exhibiting a maximum of ∼250 K about x≈0.1. For moderately oxygenated samples large magnetoresistance effect was evidenced.  相似文献   

12.
Semiconductor optoelectronic devices based on GaN and on InGaN or AlGaN alloys and superlattices can operate in a wide range of wavelengths, from far infrared to near ultraviolet region. The efficiency of these devices could be enhanced by shrinking the size and increasing the density of the semiconductor components. Nanostructured materials are natural candidates to fulfill these requirements. Here we use the density functional theory to study the electronic and structural properties of (10,0) GaN, AlN, AlxGa1 − xN nanotubes and GaN/AlxGa1 − xN heterojunctions, 0<x<1. The AlxGa1 − xN nanotubes exhibit direct band gaps for the whole range of Al compositions, with band gaps varying from 3.45 to 4.85 eV, and a negative band gap bowing coefficient of −0.14 eV. The GaN/AlxGa1 − xN nanotube heterojunctions show a type-I band alignment, with the valence band offsets showing a non-linear dependence with the Al content in the nanotube alloy. The results show the possibility of engineering the band gaps and band offsets of these III-nitrides nanotubes by alloying on the cation sites.  相似文献   

13.
The effects of the In-mole fraction (x) of an InxGa1−xN back barrier layer and the thicknesses of different layers in pseudomorphic AlyGa1−yN/AlN/GaN/InxGa1−xN/GaN heterostructures on band structures and carrier densities were investigated with the help of one-dimensional self-consistent solutions of non-linear Schrödinger-Poisson equations. Strain relaxation limits were also calculated for the investigated AlyGa1−yN barrier layer and InxGa1−xN back barriers. From an experimental point of view, two different optimized structures are suggested, and the possible effects on carrier density and mobility are discussed.  相似文献   

14.
Raman and Fourier transform infrared (FTIR) spectroscopies have been utilized to measure long-wavelength optical lattice vibrations of high-quality quaternary AlxInyGa1−x−yN thin films at room temperature. The AlxInyGa1−x−yN films were grown on c-plane (0 0 0 1) sapphire substrates with AlN as buffer layers using plasma assisted molecular beam epitaxy (PA-MBE) technique with aluminum (Al) mole fraction x ranging from 0.0 to 0.2 and constant indium (In) mole fraction y=0.1. Pseudo unit cell (PUC) model was applied to investigate the phonons frequency, mode number, static dielectric constant, and high frequency dielectric constant of the AlxInyGa1−x−yN mixed crystals. The theoretical results were compared with the experimental results obtained from the quaternary samples by using Raman and FTIR spectroscopies. The experimental results indicated that the AlxInyGa1−x−yN alloy had two-mode behavior, which includes A1(LO), E1(TO), and E2(H). Thus, these results are in agreement with the theoretical results of PUC model, which also revealed a two-mode behavior for the quaternary nitride. We also obtained new values of E1(TO) and E2(H) for the quaternary nitride samples that have not yet been reported in the literature.  相似文献   

15.
Using quantum mechanics GASTEP software package based on the first principle density function theory, the electronic structure and optical properties of Ga1−xAlxAs at different Al constituent are calculated. Result shows that with the increase of Al constituent, the band gap of Ga1−xAlxAs increases and varies from direct band gap to indirect band gap; the absorption band edge and the absorption peak move to high-energy side; the static reflectivity decreases. With the increasing of the incident photon energy, Ga1−xAlxAs shows metal reflective properties in certain energy range. With the increasing of Al constituent, static dielectric constant decreases and the intersection of dielectric function and the x-axis move towards high-energy side; the peak of energy loss function move to low-energy side and the peak value reduces.  相似文献   

16.
The correlated function expansion (CFE) interpolation procedure was presented to efficiently estimate principal energy band gaps and lattice constants of the quaternary alloy AlxGa1−xSbyAs1−y over the entire composition variable space. The lattice matching conditions between x and y for the alloy AlxGa1−xSbyAs1−y substrated to InAs and GaSb were obtained by optimizing the alloy lattice constant to that of the substrates. The corresponding principal band gaps (E(Γ), E(L), and E(X)) were also calculated along the lattice matching condition on each substrate (InAs and GaSb).  相似文献   

17.
The Shubnikov-de Haas (S-dH) results at 1.5 K for AlxGa1−xN/AlN/GaN heterostructures and the fast Fourier transformation data for the S-dH data indicated the occupation by a two-dimensional electron gas (2DEG) of one subband in the GaN active layer. Photoluminescence (PL) spectra showed a broad PL emission about 30 meV below the GaN exciton emission peak at 3.474 eV that could be attributed to recombination between the 2DEG occupying in the AlN/GaN heterointerface and photoexcited holes. A possible subband structure was calculated by a self-consistent method taking into account the spontaneous and piezoelectric polarizations, and one subband was occupied by 2DEG below the Fermi level, which was in reasonable agreement with the S-dH results. These results can help improve understanding of magnetotransport, optical, and electronic subband properties in AlxGa1−xAs/AlN/GaN heterostructures.  相似文献   

18.
LiPr1−xCexP4O12 (x=0, 0.002, 0.02; 0.1) powder samples were prepared using the melt solution technique. Luminescent parameters of LiPr1−xCexP4O12 phosphors have been investigated under ultraviolet-vacuum ultraviolet (3-12 eV) synchrotron radiation and X-rays excitation at room and near liquid He temperatures. Excitation luminescence spectra of Ce3+ emission, luminescent spectra and decay curves from the lower excited state levels of the 4f15d1 and 5d1 electronic configuration of the Pr3+ and Ce3+, respectively, clearly indicate energy transfer from Pr3+ to Ce3+. Energy migration proceeds via the Pr-sublattice followed by nonradiation transfer from Pr3+ to Ce3+ ions.  相似文献   

19.
The electronic and structural properties of zigzag aluminum nitride (AlN), gallium nitride (GaN) nanoribbons and AlxGa1−xN nanoribbon heterojunctions are investigated using the first-principles calculations. Both AlN and GaN ribbons are found to be semiconductor with an indirect band gap, which decreases monotonically with the increased ribbon width, and approaching to the gaps of their infinite two dimensional graphitic-like monolayer structures, respectively. Furthermore, the band gap of AlxGa1−xN nanoribbon heterojunctions is closely related to Al (and/or Ga) concentrations. The AlxGa1−xN nanoribbon of width n=8 shows a continuously band gap varying from about 2.2 eV-3.1 eV as x increases from 0 to 1. The large ranged tunable band gaps in such a quasi one dimension structure may open up new opportunities for these AlN/GaN based materials in future optoelectronic devices.  相似文献   

20.
The crystallization mechanism and conductivity of lithium aluminum germanium phosphate [LAGP] glass-ceramics fabricated from Li1+xAlxGe2−x(PO4)3 (x=0.0-0.7) glass system were investigated as a function of Al2O3 additions. A non-isothermal analysis was performed to study the crystallization behavior of LAGP glass-ceramics at various heating rates (5-25K min−1) by the Kissinger equation and the Augis-Bennett equation, illustrating volume crystallization for the glass-ceramics. The crystal identification and microstructure in glass-ceramics containing various Al2O3 contents were analyzed by means of XRD and FESEM. The main phase of the glass-ceramics was found to be LiGe2(PO4)3, with AlPO4 as the impurity phase. Additionally the highest total ionic conductivity (5.8×10−4 S/cm) at room temperature was obtained when x=0.5 for Li1+xAlxGe2−x(PO4)3 (x=0.0-0.7) glass-ceramics, suggesting that it was a promising electrolyte for practical application in all-solid-state lithium batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号