首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CdS particles with crystallite size of 5-12 nm have been prepared via acoustic wave stimulated (sonochemical) route and microwave initiated combustion method. X-ray line broadening and transmission electron microscopy (TEM) suggest that sonochemical powders are more amorphous (5-10 nm) compared to microwave-synthesized sulphides (10-15 nm). The photoluminescent (PL) properties of powders with size <10 nm show a clearly blue shifted, resolved emission with full-width at half-maxima (FWHM) ∼100 nm, while powders with size >15 nm show dominant blue to green narrow emission with FWHM ∼60 nm. The mechanistic details of the synthetic route appear to affect the morphology and consequently the PL properties to a significant extent.  相似文献   

2.
Magnetic susceptibilities of Eu2O3, EuF3 and EuBO3 have been measured over the wide temperature range 5-650 K. The Van Vleck paramagnetism, with the ground state of 7F0 (S=3, L=3), has been investigated comprehensively. The temperature independent paramagnetism emerges manifestly below approximately 100 K. The variation of the susceptibility with temperature for EuBO3 is in satisfactory agreement with the coupling constant , where the spin-orbit interaction is λL·S for the Russell-Saunders coupling on the basis of Van Vleck theory with one parameter λ. The value of can fit the susceptibility data of EuF3. The deviation from the theory arises in Eu2O3. This discrepancy originates mainly from the influence of the crystalline field. Susceptibility of Gd2O3, having the ground state of 8S7/2 (S=7/2, L=0), is also presented as a magnetic standard compound in comparison with these results.  相似文献   

3.
Nanoscaled Zn2SiO4:Mn2+ green phosphor with regular and uniform morphology was synthesized by hydrothermal method at a low temperature of 140 °C. The structure and morphology of the phosphor was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of the hydrothermal temperature and the time on the crystallite structure and the vacuum ultraviolet (VUV) photoluminescence (PL) properties were evaluated. The as-synthesized nanoscaled Zn2SiO4:Mn2+ phosphor exhibited intensive broad emission around 523 nm, which was attributed to the 4T16A1 transition of Mn2+. The PL intensity increased along with the increasing hydrothermal temperature and time. The heat-treated phosphors exhibited higher PL intensity than the corresponding samples prepared using the conventional solid-state reaction.  相似文献   

4.
Thermoluminescence properties of barium strontium mixed sulfate have been studied by irradiation with Argon ions. The sample was recrystallized by chemical co-precipitation techniques using H2SO4. The X-ray diffraction study of prepared sample suggests the orthorhombic structure with average grain size of 60 nm. The samples were irradiated with 1.2 MeV Argon ions at fluences varying between 1011 and 1015 ions/cm2. The argon ions penetrate to the depth of 1.89 μm and lose their energy mainly via electronic stopping. Due to ion irradiation, a large number of defects in the sample are formed. Thermally stimulated luminescence (TSL) glow curves of ion irradiated Ba0.12Sr0.88SO4 phosphor exhibit broad peak with maximum intensity at 495 K composed of four overlapping peaks. This indicates that different sets of traps are being activated within the particular temperature range each with its own value of activation energy (E) and frequency factor (s). Thermoluminescence (TL) glow curves were recorded for each of the ion fluences. A linear increase in intensity of TL glow peaks was found with the increase in ion dose from 59 kGy to 5.9 MGy. The kinetic parameters associated with the prominent glow peaks were calculated using glow curve deconvolution (GCD), different glow curve shape and sample heating rate methods.  相似文献   

5.
The MgO-Ga2O3-SiO2 glass-ceramic (GC) containing MgGa2O4 nanocrystals and glasses doped with Eu3+ ions were prepared by the sol-gel method. The down-conversion and up-conversion luminescence (UCL) properties were studied. The results indicated that the relative intensity of f-f transitions of Eu3+ decreased in contrast with that of charge transfer (CT) absorption with the increase in heating temperature. Using a Xe lamp and 800 nm femtosecond (fs) laser excitation, strong red luminescence of Eu3+ in MgO-Ga2O3-SiO2 glasses and GC was observed.  相似文献   

6.
The luminescence properties of (Y0.9Eu0.1)VO4 phosphor with Na2CO3 flux prepared using the solid-state reaction were investigated. The XRD patterns show that all of the peaks are attributed to the YVO4 phase. The best crystallinity was obtained with 2 wt% Na2CO3 flux addition. The surface morphology of (Y0.9Eu0.1)VO4 phosphor changed from fluffy to a bar shape structure after Na2CO3 flux addition due to the tetragonal crystal system of YVO4. The calcined powders emit bright red luminescence centered at 618 nm due to the 5D07F2 electric dipole transition under an excitation wavelength of 318 nm; its intensity was increased about 15% with 2 wt% Na2CO3 flux addition. Red shift behavior was observed for the charge transfer state (CTS) absorption, which was due to the grain size of (Y0.9Eu0.1)VO4 phosphor increasing with increasing flux content. For 2 wt% Na2CO3 flux addition, the red emission of the (Y0.9Eu0.1)VO4 phosphor had CIE chromaticity coordinates of (0.66, 0.34), which are very close to the NTSC system standard red chromaticity coordinates of (0.67, 0.33).  相似文献   

7.
BaMgAl10O17:Eu2+ phosphors were synthesized by the flux method. When the appropriate amounts of fluxes are added, the synthesis temperature reduced by at least 200 °C compared with the conventional solid-state reaction method. SEM images demonstrated that addition of the flux in the process of phosphor synthesis benefitted the size and morphology of BaMgAl10O17:Eu2+ phosphor particles. Photoluminescence measurements under VUV excitation indicated that the luminescent intensity of the phosphor enhanced by adding the flux system (BaF2+Li2CO3). Addition of the flux system can not only enhance the luminescence efficiency and improve the stability, but also control the morphology and grain size of the phosphor. Replacement of Ba2+ by Li+ could generate traps, which result in slightly longer decay time.  相似文献   

8.
In this article, Sr2CeO4:x mol% Eu3+ and Sr2CeO4:5 mol%Eu3+, 3 mol% Dy3+ phosphors were synthesized from assembling hybrid precursors by wet chemical method. As-prepared samples present uniform grain-like morphology and the particle size is about 0.2 μm. The luminescence spectra of Sr2CeO4:x mol% Eu3+ have been measured to examine the influence of the intensity of red emission lines for Eu3+ on the concentration of Eu3+, showing that the intensity of the red emission increases with an increase of the concentration from 1 to 5 mol%. Additionally, from the emission spectra of Sr2CeO4:5 mol%Eu3+, 3 mol% Dy3+ phosphors, the characteristic lines of Dy3+ have also been observed. This result indicates that there also exists an energy transfer process between Sr2CeO4 and Dy3+.  相似文献   

9.
YVO4:Eu3+,Bi3+ phosphors have been prepared by the high-temperature solid-state (HT) method and the Pechini-type sol-gel (SG) method. Spherical SiO2 particles have been further coated with YVO4:Eu3+,Bi3+ phosphor layers by the Pechini-type SG process, and it leads to the formation of core-shell structured SiO2/YVO4:Eu3+,Bi3+ phosphors. Therefore, the phase formations, structures, morphologies, and photoluminescence properties of the three types of as-prepared YVO4:Eu3+,Bi3+ phosphors were studied in detail. The average diameters for the phosphor particles are 2-4 μm for HT method, 0.1-0.4 μm for SG method, and 0.5 μm for core-shell structured SiO2/YVO4:Eu3+,Bi3+ particles, respectively. Photoluminescence spectra show that effective energy transfer takes place between Bi3+ and Eu3+ ions in each type of as-prepared YVO4:Eu3+,Bi3+ phosphors. Introduction of Bi3+ into YVO4:Eu3+ leads to the shift of excitation band to the long-wavelength region, thus the emission intensities of 5D0-7F2 electric dipole transition of Eu3+ at 615 nm upon 365 nm excitation increases sharply, which makes this phosphor a suitable red-emitting materials that can be pumped with near-UV light emitting diodes (LEDs).  相似文献   

10.
Tetragonal CaMoO4 and CaMoO4:Eu3+ with various novel three-dimensional (3D) hierarchical architectures were successfully synthesized via a facile, efficient sonochemistry process in the absence of any surfactant or template. XRD, EDS, FE-SEM, and photoluminescence (PL) were employed to characterize the as-obtained products. It was found that morphology modulation could be easily realized by changing pH value of the precursor. The pH value of the precursor not only affected the substructures of the hierarchical structures, but also determined the size distributions of the final products. The formation mechanism for different hierarchical architectures was proposed on the basis of time-dependent experiments. The luminescence spectra showed that CaMoO4:Eu3+ phosphors can be effectively excited by the near ultraviolet (UV) (396 nm) and blue (466 nm) light, and exhibited strong red emission around 615 nm, which was attributed to the Eu3+5D07F2 transition. Compared with Y2O3:Eu3+ phosphor, CaMoO4:Eu3+ is much more stable, efficient and suitable, therefore, this phosphors could be a promising red component for possible applications in the field of LEDs.  相似文献   

11.
Eu3+:NaGdF4 samples were obtained via co-precipitation in aqueous solution (CP), reversed micelle (RM) method, reaction between solid GdF3 and NaF solution (SR) as well as a solid-state reaction at high temperatures (SS). The synthesised materials were characterised using X-ray powder diffractometry, TEM microscopy, infrared spectroscopy and TGA analysis. For discussion of optical properties excitation and emission spectra were recorded and emission decay times were measured. The CP and RM methods allow to obtain powders with crystallite size of ∼10 nm, which may be smoothly increased to about 1 μm during post-fabrication heat treatment. Differences in structural and especially in optical properties of phosphors prepared by different techniques are emphasised and applicability of wet-chemistry routes for synthesis of fluoride powders is argued.  相似文献   

12.
A novel trivalent samarium doped SrZnV2O7 nanophosphors was developed via urea assisted solution combustion method using metal nitrates as initial raw materials. The qualitative and quantitative phase analysis was carried out using Rietveld refinement technique. It was found to crystallize in monoclinic lattice with the P121/n1 (14) space group. The photoluminescent spectral study of SrZnV2O7:Sm3+ revealed that the excitation of 405 nm yields the characteristic emission peaks at 569, 599, 640 and 702 nm due to 4G5/26H5/2, 4G5/26H7/2, 4G5/26H9/2 and 4G5/26H11/2 respectively. The optimum concentration of Sm3+ ion in SrZnV2O7 for best luminescence was found to be 2 mol%. The luminescence intensity was further enhanced by incorporating compensator charge R+ (R=Li, Na, and K) into the SrZnV2O7:0.02Sm3+ nanophosphor. The critical distance for non-radiative energy transfer was calculated to be 26.64 Å. Dipole–dipole (d–d) interactions were ascribed as the major factor responsible for concentration quenching arising from the over-doping of the activator ions. The results indicate that these nanophosphors are suitable candidate for PC-WLEDs using near UV excitation.  相似文献   

13.
ZnS nanoparticles were prepared by a simple chemical method and using PVP (poly vinylpyrrolidone) as capping agent. The sample was characterized by UV-vis spectrophotometer, X-ray diffraction (XRD) and Z-scan technique. XRD pattern showed that the ZnS nanoparticles had zinc blende structure with an average size of about 2.18 nm. The value of band gap of these nanoparticles was measured to be 4.20 eV. The nonlinear optical properties of ZnS nanoparticles in aqueous solution were studied by Z-scan technique using CW He-Ne laser at 632.8 nm. The nonlinear absorption coefficient (β) was estimated to be as high as 3.2×10−3 cm/W and the nonlinear refractive index (n2) was in order of 10−8 cm2/W. The sign of the nonlinear refractive index obtained negative that indicated this material exhibits self-defocusing optical nonlinearity.  相似文献   

14.
The potential of using encapsulation by MEA, DEA and TEA to control the morphology of ZnO powders was investigated. The crystallite and particle size decreased as a function of aminoalcohol concentration. We found that aminoalcohols can inhibit the crystal growth of ZnO along the c-axis. A steric effect by TEA more strongly influenced the formation of different ZnO shapes than did MEA and DEA. The value of the band gap was dependent on the crystallite size, particle size and particle shape.  相似文献   

15.
Given the recent increased interest in phosphor materials and their applications, we analyzed a new NaPbB5O9:Dy3+ phosphor material with different concentrations of Dy3+. In particular, we investigated the crystal structure, morphology, and luminescence properties of these materials. X-ray diffraction analyses confirmed the formation of NaPbB5O9:Dy3+ phosphor powder. The functional groups present in the phosphor materials were examined by Fourier transform infrared spectroscopy. Scanning electron microscope images showed that the size of the grains was in the micrometer range. Photoluminescence spectra were recorded at different excitation wavelengths for the phosphor materials and we analyzed the variation in the intensity of the emission bands with different concentrations of Dy3+ ions. The color co-ordinates were calculated and used to characterize the color of the phosphor. We found that the emission colors of the Dy3+-doped NaPbB5O9 powders depended on the Dy3+ ion doping concentration and the excitation wavelength.  相似文献   

16.
Needle-like SrAl2O4:Eu2+, Dy3+ phosphors had been prepared by calcining the precursors obtained from hydrothermal process at the temperature of 1100 °C in a weak reductive atmosphere of active carbon. The crystal structure, morphology and optical properties of the composites were characterized. X-ray diffraction (XRD) patterns illustrated that the single-phase SrAl2O4 was formed at 1100 °C, which is much lower than that prepared by the traditional method. The transmission electron microscope (TEM) observation revealed the precursors and the resulted SrAl2O4:Eu2+, Dy3+ phosphors had well-dispersed distribution and needle-like morphology with an average diameter about 150 nm at the center and the length up to 1 μm. After irradiation by ultraviolet radiation with 350 nm for 5 min, the phosphors emit green color long-lasting phosphorescence corresponding to the typical emission of Eu2+ ion, both the PL spectra and luminance decay revealed that the phosphors had efficient luminescent and long lasting properties.  相似文献   

17.
Nanocrystalline fluorite-like structures of Ce1−xAlxO2−δ compounds were prepared by the chemical precipitation method using cerium chloride and aluminium chloride as precursors. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). The effects of aluminium doping concentration and annealing on particle size, lattice parameter and band gap energies were investigated. The particle size of Al-doped CeO2 samples were found to decrease with Al concentration and it increases from 6 to 20 nm as annealing temperature increases to 900 °C.  相似文献   

18.
Nanocrystalline fluorite-like structures of Ce1−xFexO2−δ compounds were prepared by chemical precipitation method using cerium chloride and iron chloride as precursors. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). The effects of iron doping concentration and annealing on particle size, lattice parameter and band gap energies were investigated. The particle size of Fe-doped CeO2 samples were found to decrease with iron concentration and it increases from 9 to 26 nm as annealing temperature increases to 900 °C.  相似文献   

19.
Cadmium selenide (CdSe) thin films were electrosynthesized onto well cleaned stainless steel and fluorine-doped tin oxide (FTO) coated glass (10-15 Ω/cm2) substrates at different pH of the electrolytic solution. X-ray diffraction study reveals a cubic structure with preferential orientation along the (1 1 1) direction. The structural parameters such as grain size (D), lattice constant (a), strain (ε), dislocation density (δ), average internal stress (S) and degree of preferred orientation (I110/I220) in the film are calculated and they are found to be dependent on the pH of the depositing bath. EDAX analysis confirms nearly stoichiometric composition of the film deposited at pH 2.70. AFM analysis shows uniform deposition of the film over the entire substrate surface. In optical studies, the transition of the deposited film is found to be a direct allowed transition. The optical energy gaps are found to be in the range from 1.87 to 2.04 eV depending on the pH of the depositing bath. Photoluminescence (PL) spectrum shows blue shift in PL peak position and reduction in luminescence intensity for the film deposited at pH other than 2.70.  相似文献   

20.
Highly transparent and conductive Boron doped zinc oxide (ZnO:B) thin films were deposited using chemical spray pyrolysis (CSP) technique on glass substrate. The effect of variation of boron doping concentration in reducing solution on film properties was investigated. Low angle X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal wurtzite structure and have preferred orientation in [002] direction. The films with resistivity 2.54×10−3 Ω-cm and optical transmittance >90% were obtained at optimized boron doping concentration. The optical band gap of ZnO:B films was found ∼3.27 eV from the optical transmittance spectra for the as-deposited films. Due to their excellent optical and electrical properties, ZnO:B films are promising contender for their potential use as transparent window layer and electrodes in solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号