首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The single crystal of [Ni(ina)2(H2O)4]·(sac)2, (NINS), (ina is isonicotinamide and sac is saccharinate) complex has been prepared and its structural, spectroscopic and thermal properties have been determined. The title complex crystallizes in monoclinic system with space group P21/c, Z=2. The octahedral Ni(II) ion, which rides on a crystallographic centre of symmetry, is coordinated by two monodentate ina ligands through the ring nitrogen and four aqua ligands to form discrete [Ni(ina)2(H2O)4] unit, which captures two saccharinate ions in up and down positions, each through intermolecular hydrogen bands. The magnetic environment of copper(II) doped NINS crystal has also been identified by electron paramagnetic resonance (EPR) technique. The g and A values of Cu2+ doped NINS single crystal were calculated from the EPR spectra recorded in three mutually perpendicular planes. These values indicated that the paramagnetic centre has a rhombic symmetry with the Cu2+ ion having distorted octahedral environment. The complex exhibits only metal centred electroactivity in the potential range of −2.00, 1.25 V versus Ag/AgCl reference electrode.  相似文献   

2.
A novel mixed cadmium zirconium cesium oxalate with an open architecture has been synthesized from precipitation methods at room pressure. It crystallizes with an hexagonal symmetry, space group P3112 (no. 151), a=9.105(5) Å, c=23.656(5) Å, V=1698(1) Å3 and Z=3. The structure displays a [CdZr(C2O4)4]2− helicoidal framework built from CdO8 and ZrO8 square-based antiprisms connected through bichelating oxalates, which generates channels along different directions. Cesium cations, hydronium ions and water molecules are located inside the voids of the anionic framework. They exhibit a dynamic disorder which has been further investigated by 1H and 133Cs solid-state NMR. Moreover a phase transition depending both upon ambient temperature and water vapor pressure was evidenced for the title compound. The thermal decomposition has been studied in situ by temperature-dependent X-ray diffraction and thermogravimetry. The final product is a mixture of cadmium oxide, zirconium oxide and cesium carbonate.  相似文献   

3.
 The crystal structure of a layered ternary carbide, Ti3(Si0.43Ge0.57)C2, was studied with single-crystal X-ray diffraction. The compound has a hexagonal symmetry with space group P63/mmc and unit-cell parameters a=3.0823(1) Å, c=17.7702(6) Å, and V=146.21(1) Å3. The Si and Ge atoms in the structure occupy the same crystallographic site surrounded by six Ti atoms at an average distance of 2.7219 Å, and the C atoms are octahedrally coordinated by two types of symmetrically distinct Ti atoms, with an average C-Ti distance of 2.1429 Å. The atomic displacement parameters for C and Ti are relatively isotropic, whereas those for A (=0.43Si+0.57Ge) are appreciably anisotropic, with U11 (=U22) being about three times greater than U33. Compared to Ti3SiC2, the substitution of Ge for Si results in an increase in both A-Ti and C-Ti bond distances. An electron density analysis based on the refined structure shows that each A atom is bonded to 6Ti atoms as well as to its 6 nearest neighbor A site atoms, whether the site is occupied by Si or Ge, suggesting that these bond paths may be significantly involved with electron transport properties.  相似文献   

4.
Chemical preparation and crystal structure are given for a new cyclotetraphosphate: [3,5-(CH3)2C6H3NH3]4P4O12·3H2O. This compound is triclinic P with the following unit-cell parameters: a=8.298(3), b=8.299(3), c=17.242(7)Å, α=97.13(3), β=102.72(3), γ=64.55(3)°, Z=1 and V=1045.2(8)Å3. The crystal structure has been solved and refined to R=0.040 using 6086 independent reflections. The atomic arrangement can be described as layers organization. Layers built by P4O12 ring anions, ammonium groups and water molecules parallel to the plan (001), between which the organic groups are located. Characterization by X-ray diffraction, IR absorption, and thermal analysis are described.  相似文献   

5.
EPR spectroscopic investigations on single crystals of diaquabis[malonato(1-)-κ2O,O′] zinc(II) doped with VO(II) ion have been carried out at X-band frequencies and at 300 K. The single crystal, rotated along the three mutually orthogonally axes, has yielded spin-Hamiltonian parameters g and A as: gxx=1.980, gyy=1.972, gzz=1.937 and Axx=8.4, Ayy=6.1, Azz=18.1 mT, respectively. These spin-Hamiltonian parameters reflect a slight deviation from axial symmetry to rhombic, which is elucidated by the interstitial occupation of vanadyl ions. The isofrequency plots and powder EPR spectrum have been simulated. The percentage of metal-oxygen bond has been estimated. The optical absorption spectrum exhibits four bands at 257, 592, 720 and 764 nm suggesting a C4v symmetry. The admixture coefficients and bonding parameters have also been calculated by collaborating EPR data with optical data.  相似文献   

6.
Local structural order and temperature-dependent structural variation have been studied in the molecular-based layer ferrimagnet (n-C4H9)4N FeIIFeIII(C2O4)3 by EXAFS and high resolution X-ray powder diffraction. The EXAFS spectra measured at the Fe K-edge are successfully modelled by successive O, C, O and metal shells, showing that even when there is extensive structural disorder due to stacking faults, the local structural order in this class of ferrimagnets is fully retained. In this salt, which shows remarkable negative magnetisation at low temperature (Néel class Q), the EXAFS Debye-Waller factor has a discontinuity at 40 K, corresponding to one found in the magnetisation. At the same temperature there is also a change in the expansion of the lattice as evidenced by the high resolution X-ray powder diffraction.  相似文献   

7.
New triethylammonium salts: [(C2H5)3NH]SbCl6 (TCA) and [(C2H5)3NH]SbCl6·1/2[(C2H5)3NH]Cl (TCAT) have been synthesized. The compounds crystallise in monoclinic symmetry: space groups P21/n and P21/c, for TCA at 293 K and TCAT at 100 K, respectively. The crystal structure of [(C2H5)3NH]SbCl6 consists of discrete ionic pairs—triethylammonium cations and hexachloroantimonate anions—linked via the bifurcated N-H?Cl hydrogen bonds. The crystal structure of [(C2H5)3NH]SbCl6·1/2[(C2H5)3NH]Cl is composed of three symmetrically independent triethylammonium cations, chlorine anion and two symmetrically independent hexachloroantimonate anions. TCA undergoes a structural phase transition at 336 K (on heating) into the orthorhombic C222 space group, whereas TCAT reveals a structural phase transition at 332 K. The phase transitions are of the first order type. TCA shows a ferroelastic domain structure below 336 K. Differential scanning calorimetry, dilatometric, dielectric dispersion and Raman scattering measurements have been used to study the phase transition mechanisms in these triethylammonium salts.  相似文献   

8.
Using the 2,5-bis(2-pyridyl)-1,3,4-thiadiazole (bptd), we recently prepared [Cu2(bptd) (H2O) Cl4] and [Ni2(bptd)2 (H2O)4] Cl4, 3H2O in which the magnetic centres are connected through one diazine+one chloro and two diazine ligand bridges, respectively. These two compounds are the first examples that show null intramolecular magnetic interactions despite M-M distances close to 3.7 Å within perfectly planar edifices:Down to , [Cu2(bptd)Cl4(H2O)] is paramagnetic while, below Tt, half of the Cu2+ions interact, leading to residual paramagnetism of one Cu2+/f.u. Magnetic susceptibility measurements, EPR and pulsed EPR study indicate the original intermolecular nature of AF exchanges.[Ni2(bptd)2(H2O)4]Cl4·3H2O susceptibility obeys a Curie-law involving pure paramagnetism. Moreover, its EPR spectrum can be interpreted on the basis of virtual S=1 monomers. Below 70 K, Zero Field Splitting (D∼275 G) due to dipolar interactions without magnetic exchanges could be responsible for the LT spectra splitting. For both compounds, the thia role is suggested as partially responsible for the null-in-plane magnetic exchanges.  相似文献   

9.
Cobalt hydroxide ultra fine nanowires were prepared by a facile hydrothermal route using hydrogen peroxide. This method provides a simple, low cost, and large-scale route to produce β-cobalt hydroxide nanowires with an average diameter of 5 nm and a length of ca. 10 μm, which show a predominant well-crystalline hexagonal brucite-like phase. Their thermal decomposition produced highly uniform nanowires of cobalt oxide (Co3O4) under temperature 500 °C in the presence of oxygen gas. The produced cobalt oxide was characterized by X-ray diffraction, transmission electronic microscopy, and selected-area electron diffraction. The results indicated that cobalt oxide nanowires with an average diameter of 10 nm and a length of ca. 600 nm have been formed, which show a predominant well-crystalline cubic face-centered like phase.  相似文献   

10.
11.
Polymorphic transition of pyridinium tetrachloropalladate(II) was investigated by heat capacity measurements and by single crystal X-ray structural analysis. A large λ-type anomaly was detected at 240 K in the temperature dependence of the heat capacity. The low-temperature phase (LTP) belongs to the triclinic space group with a=6.856(1), b=7.293(1), c=7.721(1) Å, α=75.180(2)°, β=71.081(2)°, γ=81.109(3)° at 100 K, and the high-temperature phase (HTP) to the same space group with a=7.217(2), b=7.470(2), c=7.880(2) Å, α=73.438(3)°, β=65.195(3)°, γ=82.727(4)° at 293 K. The pyridinium cations are ordered antiferroelectrically in LTP. In HTP, however, an orientational disorder of the cation was observed. The energy difference between potential wells for the reorientation of pyridinium ion in HTP is discussed referring to the results of the present single crystal X-ray and heat capacity as well as the previous 1H NMR measurements. A five-site disorder model is shown to be consistent with both of the observations of 1H NMR and X-ray study.  相似文献   

12.
Chemical preparation, calorimetric studies, crystal structure and spectroscopic investigations are given for a new noncentrosymmetric organic cation monophosphate [2,5-(CH3)2C6H3NH3]H2PO4. This compound is orthorhombic P212121 with the following unit-cell parameters: a=5.872(4), b=20.984(3), c=8.465(1) Å, Z=4, V=1043.0(5) Å3 and Dx=1.396 g cm−3. Crystal structure has been solved and refined to R=0.048 using 2526 independent reflections. Structure can be described as an inorganic layer parallel to (a,b) planes between which organic groups [2,5-(CH3)2C6H3NH3]+ are located. Multiple hydrogen bonds connecting the different entities of compound thrust upon three-dimensional network a noncentrosymmetric configuration.  相似文献   

13.
Mechanochemical reaction of ZnO and α-Fe2O3 in a planetary mill formed an amorphous precursor, which was subsequently heated to successfully produce zinc ferrite (ZnFe2O4) nanocrystallites. The amorphous precursor and nanocrystallites were characterized by differential thermal analysis (DTA), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Calcination of the precursor powder at 600 °C led to the formation of ZnFe2O4 nanocrystallites of about 22 nm in crystal size, and most of particle was about 10-50 nm in diameter. Effect of calcination temperature on the crystal size of the nanoparticles was investigated. The mechanism of nanocrystallite growth was primarily investigated. The activation energy of ZnFe2O4 nanocrystallite formation during thermal treatment was calculated to be 18.5 kJ/mol.  相似文献   

14.
Growth steps and 2D nuclei are observed by AFM on the {0 0 1} faces of MnHg(SCN)4(C2H6OS)2 (MMTD) crystals. Measurements of the heights of steps and nuclei show the lowest value is equal to c/4. According to the interplanar distance modification established by Donney and Harker, the lowest height should be c/2. Appearance of the sub-layer growth is correlative with the crystal structure of MMTD.  相似文献   

15.
The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin–spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325–376 K and the frequency range from 10−2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.  相似文献   

16.
We have carried out 99/101Ru and 63/65Cu nuclear magnetic resonance experiments in order to investigate magnetic and electronic properties of the magnetic superconductor RuSr2RECu2O8 (RE=Gd, Eu and Y). The two kinds of 99/101Ru signals were observed in the magnetically ordered state for each system, suggesting a charge segregation of Ru5+ (S=3/2) and Ru4+ (S=1) ions in the RuO2 layers. The internal field at the Cu sites is revealed to be of the order of kilo Oe, indicating weak magnetic interactions between the CuO2 and RuO2 planes. The temperature dependence of nuclear spin-lattice relaxation time T1 of 63Cu in RE=Y shows a ‘spin gap’ like behavior, suggesting the system is under-doped.  相似文献   

17.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

18.
The antiferroelectric material Cs2Nb4O11 transforms at 165 °C from a low-temperature, antiferroelectric phase in space group Pnna to a high-temperature, paraelectric phase in space group Imma; the latter structure has been determined by single-crystal X-ray diffraction. The high-temperature lattice is comprised of niobium-centered tetrahedra and octahedra connected through shared vertices and edges; cesium atoms occupy channels afforded by the three-dimensional polyhedral network. Calculated band structures for both phases predict a bandgap of 3.1-3.2 eV, which is similar to that found experimentally through photoluminescence. The calculated band structure is also conducive to its observed photocatalytic properties.  相似文献   

19.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

20.
Electrical conduction and crystal structure of Al2(WO4)3 at 400 °C have been studied as a function of pressure up to 5.5 GPa using impedance methods and synchrotron radiation X-ray diffraction, respectively. AC impedance spectroscopy and DC polarization measurements reveal an ionic to electronic dominant transition in electrical conductivity at a pressure as low as 0.9 GPa. Conductivity increases with pressure and reaches a maximum at 4.0 GPa, where the conductivity value is 5 orders of magnitude greater than the 1 atm value. Upon decompression, the conductivity retains the maximum value until the sample is cooled at 0.5 GPa. The high pressure-temperature X-ray diffraction results show that the lattice parameters decrease as pressure increases and the crystal structure undergoes an orthorhombic to tetragonal-like transformation at a pressure ∼3.0 GPa. The change of conduction mechanism from ionic to electronic may be explained by means of pressure-induced valence change of W6+→W5+, which results in electron transfer between W5+-W6+ sites at high pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号