首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magnetic and electrical properties of Ln0.5Ba0.5CoO3−δ with Ln=Dy and Er have been investigated to examine the effects of large cation size-disorder. While the Dy compound shows the small magnetic anomaly around 290 K just as the Gd derivative, the Er compound is essentially paramagnetic due to the large cation size-disorder. Compositions with the same average A-site cation radii as Dy0.5Ba0.5CoO2.91 and Er0.5Ba0.5CoO2.9, but with smaller size-disorder, show progressive evolution of ferromagnetism and metallic properties with decreasing disorder.  相似文献   

2.
The crystal structure and electromagnetic properties as well as thermal stability of the A-site ordered PrBaMn2O6 manganites have been investigated. These samples have been prepared by using ‘two-steps’ synthesis mode. They have tetragonal structure with no tilt of MnO6 octahedra and show ferromagnetic metal to paramagnetic semiconductor transition. The most significant structural feature of the A-site ordered manganites is that the MnO2 sublattice is sandwiched by two types of rock-salt layers PrO and BaO. The different degree of Pr and Ba ions in the A-sublattice is revealed. The A-site ordered PrBaMn2O6 sample with maximum degree of the A-site order demonstrates ferromagnetic metallic to paramagnetic insulating transition with the Curie point ∼320 K. The A-site disordered Pr0.50Ba0.50MnO3 sample is ferromagnetic metal below TC≈140 K. The cation order in these compounds is stable in air up to 1300 °C. For the partly A-site ordered samples the magnetic and electronic phase separation is observed. The magnetotransport properties of the A-site ordered manganites treated under different conditions are discussed in terms of the superexchange interactions and A-site order degree.  相似文献   

3.
The magnetic properties of Ca-doped Nd0.5Sr0.5MnO3 have been studied by electron spin resonance (ESR) and dc magnetization measurements. The antiferromagnetic order and charge order are found to occur separately at TN=200 K and Tco=150 K, respectively. Compared to the undoped Nd0.5Sr0.5MnO3, the ferromagnetic correlations are suppressed by doping of the small Ca2+ ion. In addition, the antiferromagnetic transition temperature is enhanced to 200 K, which can be explained by an increase of superexchange interaction between Mn3+ and Mn4+ ions as their distance decreases.  相似文献   

4.
(Na0.5Bix)0.93Ba0.07TiO3 (x=0.500-0.492) ceramics were prepared by a citrate method, and the structure and electrical properties of the ceramics were investigated with respect to the amount of Bi deficiency. It was detected that the Bi deficiency had a considerable impact on the crystal structure and microstructure. The inspection of both the temperature dependence of the dielectric properties (free permittivity ε33T/ε0 and dielectric loss tan δ) and the evolution of the polarization-electrical field (P-E) hysteresis loops with measuring temperature suggests that the Bi deficiency served to increase the depolarization temperature (Td). The Bi deficiency led to an increase in the coercive field (Ec) and mechanical quality factor (Qm) together with a decrease in the remanent polarization (Pr) and piezoelectric constants (d33). The variation of the structure and electrical properties with Bi deficiency amount was qualitatively interpreted in terms of the formation of Bi and oxygen vacancies in the Bi-deficient specimens. This research indicates the importance of adequately controlling Bi stoichiometry of (Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics in obtaining the desired ferroelectric and piezoelectric properties.  相似文献   

5.
First-principles calculations based on the tight-binding linear muffin-tin orbital (TB-LMTO) method were performed to investigate the occurrence of spin polarization in the alkali metal oxides (M2O) [M: Li, Na, K, Rb] in antifluorite (anti- CaF2-type) structure with non-magnetic (N, P, As, Sb and Bi) dopants. The calculations reveal that non-magnetic substitutional doping at anion site can induce stable half-metallic ferromagnetic ground state in I2-VI compounds. Total energy calculations show that the antifluorite ferromagnetic state is energetically more stable than the antifluorite non-magnetic state at equilibrium volume. Ground state properties such as equilibrium lattice constant and bulk modulus were calculated. The calculated magnetic moment is found to be 1.00 μB per dopant atom. The magnetic moment is mainly contributed by p orbitals of dopant atom.  相似文献   

6.
Core-shell-structured LiNi0.5La0.08Fe1.92O4-polyaniline (PANI) nanocomposites with magnetic behavior were synthesized by in situ polymerization of aniline in the presence of LiNi0.5La0.08Fe1.92O4 nanoparticles. The structure, morphology and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV-vis absorption, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) technique. The results of spectroanalysis indicated that there was interaction between PANI chains and ferrite particles. TEM study showed that LiNi0.5La0.08Fe1.92O4-PANI nanocomposites presented a core-shell structure with a magnetic core of 30-50 nm diameter and an amorphous shell of 10-20 nm thickness. The nanocomposites under applied magnetic field exhibited the hysteresis loops of the ferromagnetic nature. The saturation magnetization and coercivity of nanocomposites decreased with decreasing content of LiNi0.5La0.08Fe1.92O4. The polymerization mechanism and bonding interaction in the nanocomposites have been discussed.  相似文献   

7.
Double-layered manganite La1.4Ca1.6Mn2O7 has been synthesized using the solid-state reaction method. It had a metal-to-insulator transition at temperature TM1≈127 K. The temperature dependence of ac susceptibility showed a broad ferromagnetic transition. The two-dimensional (2D)-ferromagnetic ordering temperature (TC2) was observed as ≈245 K. The temperature dependence of its low-field magnetoresistance has been studied. The low-field magnetoresistance of double-layered manganite, in the temperature regions between TM1 and TC2, has been found to follow 1/T5. The observed behaviour of temperature dependence of resistivity and low-field magnetoresistance has been explained in terms of two-phase model where ferromagnetic domains exist in the matrix of paramagnetic regions in which spin-dependent tunneling of charge carriers occurs between the ferromagnetic correlated regions. Based on the two-phase model, the dimension of these ferromagnetic domains inside the paramagnetic matrix has been estimated as ∼12 Å.  相似文献   

8.
Structural, magnetic, heat capacity, electrical and thermal transport properties are reported on polycrystalline Ba8Ni6Ge40. Ba8Ni6Ge40 crystallizes in a cubic type I clathrate structure with unit cell a=10.5179 (4) Å. It is diamagnetic with susceptibility χdia=−1.71×10-6 emu/g Oe. An Einstein temperature 75 K and a Debye temperature 307 K are estimated from heat capacity data. It exhibits n-type conducting behavior below 300 K. It shows high Seebeck coefficients (−111×10-6 V/K), low thermal conductivity (2.25 W/K m), and low electrical resistivity (8.8 mΩ cm) at 300 K.  相似文献   

9.
Systematic studies of X-ray, magnetic, electronic transport, and elastic properties have been performed on polycrystalline Bi0.5Ca0.4Sr0.1MnO3 sample. The sample exhibits charge ordering (CO) state below TCO (=304 K), accompanied by a distinct maximum in magnetization. The softening of Young's modulus in the vicinity of TCO indicates that there is a strong coupling of electron-phonon due to Jahn-Teller (JT) effect. The dynamic ferromagnetic spin correlations are observed at high temperatures above TCO, which are replaced by antiferromagnetic (AFM) spin fluctuations at a concomitant CO transition. Below 32 K, a spin-glass (SG) state dominates at low temperatures. The voltage-current (V-I) characteristics measurement results indicate that the non-linear conduction starts above a threshold current, giving rise to a region of negative differential resistance (NDR). The origin of the non-linear conduction is discussed in view of current induced collapse of CO state associated with phase-separation mechanism.  相似文献   

10.
The structural, electronic and elastic properties of Ti3Si0.5Ge0.5C2 have been investigated by using the pseudopotential plane-wave method within the density-functional theory. Our calculated equation of state (EOS) is consistent with the experimental results. The density of states (DOS) indicates that Ti3SixGe1−xC2 (x=0, 0.5, 1.0) are metallic, and these compounds have nearly the same electrical conductivity. The elastic constants for Ti3Si0.5Ge0.5C2 are obtained at zero pressure, which is compared to Ti3SiC2 and Ti3GeC2. We can conclude that Ti3Si0.5Ge0.5C2 is brittle in nature by analyzing the ratio between bulk and shear moduli. There appears to be little effect on the electronic and elastic properties with the Ge substitution to Si atoms in Ti3SiC2.  相似文献   

11.
A coordinated investigation of the magnetic and electrical properties of polycrystalline cobalt oxide compounds CdCoO3, Gd0.9Ba0.1CoO3, and Gd0.9Sr0.1CoO3 is carried out. Undoped GdCoO3 reveals a low conductivity; a magnetic moment of 7.4 μB per molecule, which is less than the theoretical value for the Gd3+ ion; and an asymptotic Curie temperature of ?6 K. Doping GdCoO3 with barium and strontium to substitution of 10 at. % Gd brings about an increase in the conductivity and magnetic transitions at T = 300 K for Gd0.9Ba0.1CoO3 and T = 170 K for Gd0.9Sr0.1CoO3. The magnetization anomalies imply the formation of magnetic clusters. The behavior of the electrical conductivity at high temperatures suggests a variable activation energy. At low temperatures, Mott hopping conduction sets in.  相似文献   

12.
Magnetic and electric properties of layered perovskites Nd2−2xSr1+2xMn2O7 (x=0.3, 0.4 and 0.5) are sensitive to the doping content x. The sample with x=0.5 is antiferromagnetic (AFM) and insulating. On decreasing x, the AFM ordering is suppressed and a canted AFM or weak ferromagnetic (FM) ordering appears, and the resistivity decreases. The sample with x=0.4 still shows insulating behavior, but a metal–insulator transition is observed for x=0.3. By suggesting the presence of a competition between AFM super-exchange interaction and FM double-exchange interaction, the doping dependence of magnetic and electric properties can be understood.  相似文献   

13.
Crystal structure, thermogravimetry (TG), thermal expansion coefficient (TEC), electrical conductivity and AC impedance of (Ba0.5Sr0.5)1-xLaxCo0.8Fe0.2O3-δ (BSLCF; 0.05?x?0.20) were studied in relation to their potential use as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. A single cubic pervoskite was observed by X-ray diffraction (XRD). The TEC of BSLCF was increasing slightly with the increasing content of La, and all the compounds showed abnormal expansion at high temperature. Proved by the TG result, it was associated with the loss of lattice oxygen. The electrical conductivity, which is the main defect of Ba0.5Sr0.5 Co0.8Fe0.2O3-δ (BSCF), was improved by La doping, e.g., the compound of x=0.20 demonstrated a conductivity of σ=376 S cm−1 at 392 °C. The increase of electrical conductivity resulted from the increased concentration of charge carrier induced by La doping. In addition, the AC impedance revealed the better electrochemical performance of BSLCF. For example, at 500 °C, the sample with composition x=0.15 yielded the resistance values of 2.12 Ω cm2, which was only 46% of BSCF.  相似文献   

14.
The magnetic and transport properties of the Ga-doped charge-ordering state La0.5Ca0.5MnO3 have been studied. A current-dependent large positive magnetoresistance (1080%) at 5 K was observed. These observations are interpreted in terms of the spin-dependent tunnelling process between ferromagnetic clusters embedded in an antiferromagnetic matrix.  相似文献   

15.
Double-layered manganite La2−2xCa1+2xMn2O7 have been synthesized for compositions ‘x’=0.0, 0.1, 0.2, 0.3, 0.4 and 0.5 by solid state reaction method. From X-ray diffraction study, their crystal structures were found to be tetragonal perovskite with lattice parameters decreasing with increasing ‘x’. The decreasing lattice parameters affect the balance between in-plane, intra-bilayer and inter-bilayer exchange interactions, which is reflected on magnetotransport properties. The metal-to-insulator transition temperature is found to vary with composition and peaked around ‘x’=0.3. From ac-susceptibility study, 2D-ferromagnetic ordering was observed at higher temperatures for all compositions whereas 3D-ferromagnetic ordering was observed at quite low temperatures. In low-temperature region, decreasing susceptibility shows antiferromagnetic state for all compositions. On the basis of electrical and magnetic properties, a magnetic phase diagram is given.  相似文献   

16.
Skutterudite compounds PbxBayCo4Sb11.5Te0.5 (x≤0.23,y≤0.27) with bcc crystal structure have been prepared by the high pressure and high temperature (HPHT) method. The study explored a chemical method for filling Pb and Ba atoms into the voids of CoSb3 to optimize the thermoelectric figure of merit ZT in the system of PbyBaxCo4Sb11.5Te0.5. The structure of PbxBayCo4Sb11.5Te0.5 skutterudites was evaluated by means of X-ray diffraction. The Seebeck coefficient, electrical resistivity and power factor were performed from room temperature to 710 K. Compared with Co4Sb11.5Te0.5, the thermal conductivity of Pb and Ba double-filled samples was reduced evidently. Among all filled samples, Pb0.03Ba0.27Co4Sb11.5Te0.5 showed the highest power factor of 31.64 μW cm−1 K−2 at 663 K. Pb0.05Ba0.25Co4Sb11.5Te0.5 showed the lowest thermal conductivity of 2.73 W m−1 K−1 at 663 K, and its maximum ZT value reached 0.63 at 673 K.  相似文献   

17.
In this study, monophasic Bax(Na0.5Bi0.5)1−xBi4Ti4O15 (x=0.03, 0.06, 0.09 and 0.12) ceramics fabricated from the powders synthesized via the solid-state reaction route exhibited relaxor behavior. X-ray diffraction analysis revealed that the barium-modified Na0.5Bi4.5Ti4O15 ceramics have a pure four-layer Aurivillius phase structure. Dielectric properties and phase transitions were studied and are explained in terms of lattice response of these ceramics. A shift in ferroelectric–paraelectric phase transition (Tc) to lower temperatures and a corresponding increase in permittivity peak with increasing concentration of Ba2+ are also observed. The decrease of orthorhombicity in the lattice structure by the larger Ba2+ ion incorporation, indicating an approach of a and b parameters, results in lower Curie temperature. The piezoelectric activity of Na0.5Bi4.5Ti4O15 (NBT) ceramics was significantly improved by the modification of barium. The Curie temperature Tc and piezoelectric coefficient d33 for the composition with x=0.12 were found to be 635 °C and 21 pC/N, respectively. The relationship of polarization with lattice response is discussed.  相似文献   

18.
Detailed structural analysis of the X-Ray diffraction pattern of La0.9Gd0.1FeO3 (LGFO) synthesized via the solid state reaction reveals distorted perovskite structure. Magnetization studies show a characteristic of weak ferromagnetism which is believed to be induced by canted anti-ferromagnetically coupled spins. When explored in a wide temperature and frequency range, AC electrical properties reveal interesting relaxation mechanisms. LGFO exhibits relatively high dielectric permittivity (ε′~4×103) close to room temperature. Temperature dependent magneto-dielectric response appears (magnetodielectric ~−5.5%) even at low magnetic field ~5 kOe. Attractive electrical, magnetic and magnetoelectric properties of the present LGFO at relatively higher temperature makes it a very promising material for application in devices.  相似文献   

19.
A series of SmCoAsO1−xFx (with x=0, 0.05, 0.1, and 0.2) samples have been prepared by solid state reactions. X-ray powder diffraction proved that all samples can be indexed as a tetragonal ZrCuSiAs-type structure. A clear shrinkage of the lattice constants a and c with increasing F content indicated that F has been doped into the lattice. The magnetic and transport properties of the samples have been investigated. Parent SmCoAsO compound exhibited complicated magnetism including antiferromagnetism, ferromagnetism, and ferrimagnetism. For the fluorine doped samples, the antiferromagnetic Néel temperatures were almost independent of the F content and metamagnetic transitions were observed below antiferromagnetic Néel temperatures. With increasing F content, high temperature (below 142 K) ferrimagnetic state gradually changed to ferromagnetic state. In the resistivity result, metallic conduction in the region of 2-300 K and Fermi liquid behavior at low temperatures were shown in all samples. Transport properties at applied magnetic fields showed anomalies at low temperatures.  相似文献   

20.
The magnetic and electrical properties of the Al-doped polycrystalline spinels ZnxCryAlzSe4 (0.13≤z≤0.55) with the antiferromagnetic (AFM) order and semiconducting behavior were investigated. A complex antiferromagnetic structure below a Néel temperature TN≈23 K for the samples with z up to 0.4 contrasting with the strong ferromagnetic (FM) interactions evidenced by a large positive Curie-Weiss temperature θCW decreasing from 62.2 K for z=0.13 to 37.5 K for z=0.55 was observed. Detailed investigations revealed a divergence between the zero-field-cooling (ZFC) and field-cooling (FC) susceptibilities at temperature less than TN suggesting bond frustration due to competing ferromagnetic and antiferromagnetic exchange interactions in the compositional range 0.13≤z≤0.4. Meanwhile, for z=0.55 a spin-glass-like behavior of cluster type with randomly oriented magnetic moments is observed as the ZFC-FC splitting goes up to the freezing temperature Tf=11.5 K and the critical fields connected both with a transformation of the antiferromagnetic spin spiral via conical magnetic structure into ferromagnetic phase disappear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号