首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules. Assuming that the solid-phase velocity distributions obey the Maxwell equations, the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow, the solid-particle‘s governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations. Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale (SGS) model, in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor, is proposed to model the two-phase governing equations by applying dimension analyses. Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls, the velocity and pressure fields, and the volumetric concentration are calculated. The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.  相似文献   

2.
Particle fluctuation and gas turbulence in dense gas-particle flows are less studied due to complexity of the phenomena. In the present study, simulations of gas turbulent flows passing over a single particle are carried out first by using RANS modeling with a Reynolds stress equation turbulence model and sufficiently fine grids, and then by using LES. The turbulence enhancement by the particle wake effect is studied under various particle sizes and relative gas velocities, and the turbulence enhancement is found proportional to the particle diameter and the square of velocity. Based on the above results, a turbulence enhancement model for the particle-wake effect is proposed and is incorporated as a sub-model into a comprehensive two-phase flow model, which is then used to simulate dilute gas-particle flows in a horizontal channel. The simulation results show that the predicted gas turbulence by using the present model accounting for the particle wake effect is obviously in better agreement with the experimental results than the prediction given by the model not accounting for the wake effect. Finally, the proposed model is incorporated into another two-phase flow model to simulate dense gasparticle flows in a downer. The results show that the particle wake effect not only enhances the gas turbulence, but also amplifies the particle fluctuation.  相似文献   

3.
Viscous flow around a circular cylinder at a subcritical Reynolds number is investigated using a large eddy simulation (LES) coupled with the Smagorinsky subgrid-scale (SGS) model. A fractional-step method with a second-order in time and a combined finite-difference/spectral approximations are used to solve the filtered three-dimensional incompressible Navier-Stokes equations. Calculations have been performed with and without the SGS model. Turbulence statistical behaviors and flow structures in the near wake of the cylinder are studied. Some calculated results, including the lift and drag coefficients, shedding frequency, peak Reynolds stresses, and time-average velocity profile, are in good agreement with the experimental and computational data, which shows that the Smagorinsky model can reasonably predict the global features of the flow and some turbulent statistical behaviors. The project supported by the National Science Fund for Distinguished Scholars (10125210), the Special Funds for Major State Basic Research Project (G1999032801) and the National Natural Science Foundation of China (19772062)  相似文献   

4.
The present paper describes a numerical two-way coupling model for shock-induced laminar boundary-layer flows of a dust-laden gas and studies the transverse migration of fine particles under the action of Saffman lift force. The governing equations are formulated in the dilute two-phase continuum framework with consideration of the finiteness of the particle Reynolds and Knudsen numbers. The full Lagrangian method is explored for calculating the dispersed-phase flow fields (including the number density of particles) in the regions of intersecting particle trajectories. The computation results show a significant reaction of the particles on the two-phase boundary-layer structure when the mass loading ratio of particles takes finite values. The project supported by the National Natural Science Foundation of China (90205024) and Russian Foundation for Basic Research (RFBR and (RFBR-NSFC-39004) The English text was polished by Yunming Chen  相似文献   

5.
To predict the characteristics of dense liquid-solid two-phase flow, K-ε-T model is established, in which the turbulent flow of fluid phase is described with fluid turbulent kinetic energy Kf and its dissipation rate εf, and the particles random motion is described with particle turbulent energy Kp and its dissipation rate εp and pseudothermal temperature Tp. The governing equations are also derived. With K-ε-T model, numerical study of dense liquid-solid two-phase turbulent up-flow in a pipe is performed. The calculated results are in good agreement with experimental data of Alajbegovic et al. (1994), and some flow features are captured.  相似文献   

6.
The USM-θmodel of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingham fluid yield stress are taken into account. An algorithm for USM-θmodel in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θmodel has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θmodel was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow.  相似文献   

7.
A new dynamic model is proposed in which the eddy viscosity is defined as a symmetric second rank tensor, proportional to the product of a turbulent length scale with an ellipsoid of turbulent velocity scales. The employed definition of the eddy viscosity allows to remove the local balance assumption of the SGS turbulent kinetic energy formulated in all the dynamic Smagorinsky-type SGS models. Furthermore, because of the tensorial structure of the eddy viscosity the alignment assumption between the principal axes of the SGS turbulent stress tensor and the resolved strain-rate tensor is equally removed, an assumption which is employed in the scalar eddy viscosity SGS models. The proposed model is tested for a turbulent channel flow. Comparison with the results obtained with other dynamic SGS models (Dynamic Smagorinsky Model, Dynamic Mixed Model and Dynamic K-equation Model) shows that the tensorial definition of the eddy viscosity and the removal of the local balance assumption of the SGS turbulent kinetic energy considerably improves the agreement between results obtained with Large Eddy simulation (LES) and Direct Numerical Simulations (DNS), respectevely. Received August 26, 1999  相似文献   

8.
A solver is developed for time-accurate computations of viscous flows based on the conception of Newton‘s method. A set of pseudo-time derivatives are added into governing equations and the discretized system is solved using GMRES algorithm. Due to some special properties of GMRES algorithm, the solution procedure for unsteady flows could be regarded as a kind of Newton iteration. The physical-time derivatives of governing equations are discretized using two different approaches, I.e., 3-point Euler backward, and Crank-Nicolson formulas, both with 2nd-order accuracy in time but with different truncation errors. The turbulent eddy viscosity is calculated by using a version of Spalart~Allmaras one-equation model modified by authors for turbulent flows. Two cases of unsteady viscous flow are investigated to validate and assess the solver, I.e., low Reynolds number flow around a row of cylinders and transonic bi-circular-arc airfoil flow featuring the vortex shedding and shock buffeting problems, respectively. Meanwhile, comparisons between the two schemes of timederivative discretizations are carefully made. It is illustrated that the developed unsteady flow solver shows a considerable efficiency and the Crank-Nicolson scheme gives better results compared with Euler method.  相似文献   

9.
An investigation of large-eddy simulation (LES) for turbulent channel flow with buoyancy effects was performed by solving the resolved incompressible Navier-Stokes equations under the Boussinesq approximation. The Smagorinsky eddy-viscosity model and Yoshizawa eddy-viscosity model were used to describe the unresolved subgrid scale (SGS) fluctuations respectively. After some numerical testing, the latter was further simplified so that it can be used in the dynamic model closure. A LES code was developed for parallel computations by using the parallel technique, and was run on the Dawn-1000 parallel computer. To demonstrate the viability and accuracy of the code, our results are compared with and found in good agreement with available LES results. The project supported by the National Natural Science Foundation of China and by the Youngster Funding of Academia Sinica  相似文献   

10.
By considering the effect of interfacial damage and using the variation principle, three-dimensional nonlinear dynamic governing equations of the laminated plates with interfacial damage are derived based on the general sixdegrees-of-freedom plate theory towards the accurate stress analysis. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are obtained by using the finite difference method, and the results are validated by comparison with the solution of nonlinear finite element method. In numerical calculations, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed.  相似文献   

11.
12.
Nonlinear vibration analysis of viscoelastic cable with small sag   总被引:3,自引:0,他引:3  
Both the inplane and out-of-plane transverse vibrations of a viscoelastic cable subjected to an initial stress distributing uniform on the cross section are studied. The constitution of the cable material is assumed to be of the hereditary integral type. The partial differential-integral equations of motion are derived first. Then by applying Galerkin's method, the governing equations are reduced to a set of second-order nonlinear differential-integral equations which are solved by finite difference numerical integration procedures. Finally, the effects of the viscosity parameter and the elastic parameter on the transient amplitudes of the first mode are investigated by numerical simulation. Project supported by the National Natural Science Foundation of China (No. 59635140) and the National Postdoctoral Foundation of China.  相似文献   

13.
A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision and through a unified treatment of these two kinds of fluctuations. The proposed model is used to simulate gas-particle flows in a channel and in a downer. Simulation results are in agreement with the experimental results reported in references and are near the results obtained using the single-scale second-order moment two-phase turbulence model superposed with a particle collision model (USM-θ model) in most regions. The project supported by the Special Funds for Major State Basic Research, China (G-1999-0222-08), and the Postdoctoral Science Foundation (2004036239) The English text was polished by Keren Wang  相似文献   

14.
A USM-Θ two-phase turbulence model for simulating dense gas-particle flows   总被引:1,自引:0,他引:1  
A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM- model), combining the unified second-order moment two-phase turbulence model for dilute gas-particle flows with the kinetic theory of particle collision, is proposed. The interaction between gas and particle turbulence is simulated using the transport equation of two-phase velocity correlation with a two-time-scale dissipation closure. The proposed model is applied to simulate dense gas-particle flows in a horizontal channel and a downer. Simulation results and their comparison with experimental results show that the model accounting for both anisotropic particle turbulence and particle-particle collision is obviously better than models accounting for only particle turbulence or only particle-particle collision. The USM- model is also better than the k--kp- model and the k--kp-p- model in that the first model can simulate the redistribution of anisotropic particle Reynolds stress components due to inter-particle collision, whereas the second and third models cannot.The project supported by the Special Funds for Major State Basic Research of China (G-1999-0222-08), the National Natural Science Foundation of China (50376004), and Ph.D. Program Foundation, Ministry of Education of China (20030007028)  相似文献   

15.
A particle nonlinear two-scale turbulence model is proposed for simulating the anisotropic turbulent two-phase flow. The particle kinetic energy equation for two-scale fluctuation, particle energy transfer rate equation for large-scale fluctuation, and particle turbulent kinetic energy dissipation rate equation for small-scale fluctuation are derived and closed. This model is used to simulate gas–particle flows in a sudden-expansion chamber. The simulation is compared with the experiment and with those obtained by using another two kinds of tow-phase turbulence model, such as the single-scale two-phase turbulence model and the particle two-scale second-order moment (USM) two-phase turbulence model. It is shown that the present model gives simulation in much better agreement with the experiment than the single-scale two-phase turbulence model does and is almost as good as the particle two-scale USM turbulence model. The project supported by China Postdoctoral Science Foundation (2004036239).  相似文献   

16.
The purpose is to establish the rather complete equations of motion, boundary conditions and equation of energy rate of incremental rate type for micropolar continua. To this end the rather complete definitions for rates of deformation gradient and its inverse are made. The new relations between various stress and couple stress rate tensors are derived. Finally, the coupled equations of motion, boundary conditions and equation of energy rate of incremental rate type for continuum mechanics are obtained as a special case. Contributed by Dai Tian-min, Original Member of Editorial Committee, AMM Foundation items: the National Natural Science Foundation of China (10072024); the Research Foundation of Liaoning Education Committee (990111001) Biography: Dai Tian-min (1931≈)  相似文献   

17.
A theoretical treatment of the scattering of anti-plane shear (SH) waves is provided by a single crack in an unbounded transversely isotropic electro-magneto-elastic medium. Based on the differential equations of equilibrium, electric displacement and magnetic induction intensity differential equations, the governing equations for SH waves were obtained. By means of a linear transform, the governing equations were reduced to one Helmholtz and two Laplace equations. The Cauchy singular integral equations were gained by making use of Fourier transform and adopting electro-magneto impermeable boundary conditions. The closed form expression for the resulting stress intensity factor at the crack was achieved by solving the appropriate singular integral equations using Chebyshev polynomial. Typical examples are provided to show the loading frequency upon the local stress fields around the crack tips. The study reveals the importance of the electro-magneto-mechanical coupling terms upon the resulting dynamic stress intensity factor. Contributed by SHEN Ya-peng Foundation item: the National Natural Science Foundation of China (10132010, 50135030) Biographies: DU Jian-ke (1970∼)  相似文献   

18.
In this paper, the dynamic interaction between two collinear cracks in a piezoelectric material plate under anti-plane shear waves is investigated by using the non-local theory for impermeable crack surface conditions. By using the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations. These equations are solved using the Schmidt method. This method is more reasonable and more appropriate. Unlike the classical elasticity solution, it is found that no stress and electric displacement singularity is present at the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The project supported by the Natural Science Foundation of Heilongjiang Province and the National Natural Science Foundation of China(10172030, 50232030)  相似文献   

19.
Exact solutions are obtained for transient torsio- nal responses of a finitely long, functionally graded hollow cylinder under three different end conditions, i.e. free-free, free-fixed and fixed-fixed. The cylinder with its external surface fixed is subjected to a dynamic shearing stress at the internal surface. The material properties are assumed to vary in the radial direction in a power law form, while keep invariant in the axial direction. With expansion in the axial direction in terms of trigonometric series, the governing equations for the unknown functions about the radial coordinate r and time t are deduced. By applying the variable substitution technique, the superposition method and the separation of variables consecutively, series-form solutions of the equations are obtained. Natural frequencies and the transient torsional responses are finally discussed for a functionally graded finite hollow cylinder.  相似文献   

20.
In the present article, the droplet dynamics in turbulent flow is numerically predicted. The modelling is based on an interfacial marker-level set (IMLS) method, coupled with the Reynolds-averaged Navier–Stokes (RANS) equations to predict the dynamics of turbulent two-phase flow. The governing equations for time-dependent, two-dimensional and incompressible two-phase flow are described in both phases and solved separately using a control volume approach on structured cell-centred collocated grids. The topological changes of the interface are predicted by applying the level set approach. The kinematic and dynamic conditions on the interface separating the two phases are satisfied. The numerical method proposed is validated against a well-known computational fluid dynamics problem. Further, the deformation and breakup of a single droplet either suddenly moved in air or exposed to turbulent stream are numerically investigated. In general, the developed numerical method demonstrates remarkable capability in predicting the characteristics of complex turbulent two-phase flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号