首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
The reactions of hydrazoic acid (HN3) with ethene, acetylene, formaldimine (H2CNH), and HCN were explored with the high‐accuracy CBS‐QB3 method, as well as with the B3LYP and mPW1K density functionals. CBS‐QB3 predicts that the activation energies for the reactions of hydrazoic acid with ethylene, acetylene, formaldimine, and HCN have remarkably similar activation enthalpies of 19.0, 19.0, 21.6, and 25.2 kcal/mol, respectively. The reactions are calculated to have reaction enthalpies of −21.5 for triazoline formation from ethene, and −63.7 kcal/mol for formation of the aromatic triazole from acetylene. The reaction to form tetrazoline from formaldimine has a reaction enthalpy of −8 kcal/mol (ΔGrxn=+5.6 kcal/mol), and the formation of tetrazole from HCN has a reaction enthalpy of −23.0 kcal/mol. The trends in the energetics of these processes are rationalized by differences in σ‐bond energies in the transition states and adducts, and the energy required to distort hydrazoic acid to its transition‐state geometry. The density functionals predict activation enthalpies that are in relatively good agreement with CBS‐QB3, the results differing from CBS‐QB3 results by ca. 1–2 kcal/mol. Significant errors are revealed for mPW1K in predicting the reaction enthalpies for all reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号