首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the importance of the C(3)H radical in both combustion and interstellar space, the reactions of C(3)H toward stable molecules have never been studied. In this paper, we report our detailed mechanistic study on the radical-molecule reaction C(3)H+H(2)O at the Becke's three parameter Lee-Yang-Parr-B3LYP6-311G(d,p) and coupled cluster with single, double, and triple excitations-CCSD(T)6-311G(2d,p) (single-point) levels. It is shown that the C(3)H+H(2)O reaction initially favors formation of the carbene-insertion intermediates HCCCHOH (1a,1b) rather than the direct H- or OH-abstraction process. Subsequently, the isomers (1a,1b) can undergo a direct H- extrusion to form the well-known product propynal HCCCHO (P(5)). Highly competitively, (1a,1b) can take the successive 1,4- and 1,2-H-shift interconversion to isomer H(2)CCCHO(2a,2b) and then to isomer H(2)CCHCO(3a,3b), which can finally take a direct C-C bond cleavage to give product C(2)H(3) and CO (P(1)). The other products are kinetically much less feasible. With the overall entrance barrier 10.6 kcal/mol, the title reaction can be important in postburning processes. Particularly, our calculations suggest that the title reaction may play a role in the formation of the intriguing interstellar molecule, propynal HCCCHO. The calculated results will also be useful for the analogous C(3)H reactions such as with ammonia and alkanes.  相似文献   

2.
A theoretical study was performed for the reaction of formyl cation and acetylene to give C3H+O in flames and C2H (nonclassical)+CO, both in flames and in interstellar clouds. The corresponding Potential Energy Surface (PES) was studied at the B3LYP/cc‐pVTZ level of theory, and single‐point calculations on the B3LYP geometries were carried out at the CCSD(T)/cc‐pVTZ level. Our results display a route to propynal evolving energetically under C2H (nonclassical)+CO and, consequently, accessible in interstellar clouds conditions. This route connects the most stable C3H3O+ isomer (C2‐protonated propadienone) with a species from which propynal may be produced in a dissociative electron recombination reaction. The reaction channel to produce the C3H+O evolves basically through two TSs and presents an endothermicity of 63.9 kcal/mol at 2000 K. According to our Gibbs energy profiles, the C2‐protonated propadienone is the most stable species at low–moderate temperatures and, consequently, could play a certain role in interstellar chemistry. On the contrary, in combustion chemistry conditions (2000 K) the C2H (nonclassical)+CO products are the most thermodynamically favored species. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 35–42, 2000  相似文献   

3.
Although a number of hydrocarbon radicals including the heavier C(3)-radicals C(3)H(3) and C(3)H(5) have been experimentally shown to deplete NO effectively, no theoretical or experimental attempts have been made on the reactivity of the simplest C(3)-radical towards NO. In this article, we report our detailed mechanistic study on the C(3)H+NO reaction at the Gussian-3//B3LYP/6-31G(d) level by constructing the singlet and triplet electronic state [H,C(3),N,O] potential energy surfaces (PESs). The l-C(3)H+NO reaction is shown to barrierlessly form the entrance isomer HCCCNO followed by the direct O-elimination leading to HCCCN+(3)O on triplet PES, or by successive O-transfer, N-insertion, and CN bond-rupture to generate the product (1)HCCN+CO on singlet PES. The possible singlet-triplet intersystem crossings are also discussed. Thus, the novel reaction l-C(3)H+NO can proceed effectively even at low temperatures and is expected to play an important role in both combustion and interstellar processes. For the c-C(3)H+NO reaction, the initially formed H-cCCC-NO can most favorably isomerize to HCCCNO, and further evolution follows that of the l-C(3)H+NO reaction. Quantitatively, the c-C(3)H+NO reaction can take place barrierlessly on singlet PES, yet it faces a small barrier 2.7 kcal/mol on triplet PES. The results will enrich our understanding of the chemistry of the simplest C(3)-radical in both combustion and interstellar processes, which to date have received little attention despite their importance and available abundant studies on its structural and spectroscopic properties.  相似文献   

4.
Classical simulations of the reactions between HCO+/COH+ and hydrogen atoms, as well as their deuterated variants, have been carried out on an ab initio interpolated potential energy surface. The surface is constructed at the quadratic configuration interaction with single and double excitation level of ab initio calculation. At low energies we observe reaction channels associated with the isomerization of the cation, hydrogen/deuterium exchange, and the combination of isomerization with exchange. The HCO+/DCO+ ions only undergo exchange, and deuteration is more facile than the release of deuterium. The COH+/COD+ ions undergo isomerization or isomerization combined with exchange, the latter being the dominant reaction channel. Deuteration is again more facile than the release of deuterium, in combination with isomerization. These results are consistent with experimental measurements and with hypotheses on the deuteration of molecules in the interstellar medium.  相似文献   

5.
The reaction C + H3+ --> CH(+) + H2 is frequently used in models of dense interstellar cloud chemistry with the assumption that it is fast, i.e. there are no potential energy barriers inhibiting it. Ab initio molecular orbital study of the triplet CH3+ potential energy surface (triplet because the reactant carbon atom is a ground state triplet) supports this hypothesis. The reaction product is 3 pi CH+; the reaction is to exothermic even though the product is not in its electronic ground state. No path has been found on the potential energy surface for C + H3+ --> CH2(+) + H reaction.  相似文献   

6.
We report quasiclassical trajectory calculations of the dynamics of the two reaction channels of formaldehyde dissociation on a global ab initio potential energy surface: the molecular channel H(2)CO-->H(2) + CO and the radical H(2)CO-->H + HCO. For the molecular channel, it is confirmed that above the threshold of the radical channel a second, intramolecular hydrogen abstraction pathway is opened to produce CO with low rotation and vibrationally hot H(2). The low-j(CO) and high-nu(H(2) ) products from the second pathway increase with the total energy. The competition between the molecular and radical pathways is also studied. It shows that the branching ratio of the molecular products decreases with increasing energy, while the branching ratio of the radical products increases. The results agree well with very recent velocity-map imaging experiments of Suits and co-workers and solves a mystery first posed by Moore and co-workers. For the radical channel, we present the translational energy distributions and HCO rotation distributions at various energies. There is mixed agreement with the experiments of Wittig and co-workers, and this provides an indirect confirmation of their speculation that the triplet surface plays a role in the formation of the radical products.  相似文献   

7.
This paper examines the unimolecular dissociation of propargyl (HCCCH2) radicals over a range of internal energies to probe the CH+HCCH and C+C2H3 bimolecular reactions from the radical intermediate to products. The propargyl radical was produced by 157 nm photolysis of propargyl chloride in crossed laser-molecular beam scattering experiments. The H-loss and H2 elimination channels of the nascent propargyl radicals were observed. Detection of stable propargyl radicals gave an experimental determination of 71.5 (+5-10) kcal/mol as the lowest barrier to dissociation of the radical. This barrier is significantly lower than predictions for the lowest barrier to the radical's dissociation and also lower than calculated overall reaction enthalpies. Products from both H2+HCCC and H+C3H2 channels were detected at energies lower than what has been theoretically predicted. An HCl elimination channel and a minor C-H fission channel were also observed in the photolysis of propargyl chloride.  相似文献   

8.
To date only one product, biphenyl, has been reported to be produced from C(6)H(5) + C(6)H(6)/C(6)H(5) reactions. In this study, we have investigated some unique products of C(6)H(5) + C(6)H(6)/C(6)H(5) reactions via both experimental observation and theoretical modeling. In the experimental study, gas-phase reaction products produced from the pyrolysis of selected aromatics and aromatic/acetylene mixtures were detected by an in situ technique, vacuum ultraviolet (VUV) single photon ionization (SPI) time-of-flight mass spectrometry (TOFMS). The mass spectra revealed a remarkable correlation in mass peaks at m/z = 154 {C(12)H(10) (biphenyl)} and m/z = 152 {C(12)H(8) (?)}. It also demonstrated an unexpected correlation among the HACA (hydrogen abstraction and acetylene addition) products at m/z = 78, 102, 128, 152, and 176. The analysis of formation routes of products suggested the contribution of some other isomers in addition to a well-known candidate, acenaphthylene, in the mass peak at m/z = 152 (C(12)H(8)). Considering the difficulties of identifying the contributing isomers from an observed mass number peak, quantum chemical calculations for the above-mentioned reactions were performed. As a result, cyclopenta[a]indene, as-indacene, s-indacene, biphenylene, acenaphthylene, and naphthalene appeared as novel products, produced from the possible channels of C(6)H(5) + C(6)H(6)/C(6)H(5) reactions rather than from their previously reported formation pathways. The most notable point is the production of acenaphthylene and naphthalene from C(6)H(5) + C(6)H(6)/C(6)H(5) reactions via the PAC (phenyl addition-cyclization) mechanism because, until now, both of them have been thought to be formed via the HACA routes. In this way, this study has paved the way for exploring alternative paths for other inefficient HACA routes using the PAC mechanism.  相似文献   

9.
Polycyclic aromatic hydrocarbon growth from acenaphthylene and cyclopentadienyl was investigated by using the B3LYP/6-31G(d,p) and BH&HLYP/6-31G(d,p) levels of theory as well as transition state theory. The reaction pathways of cyclopentadienyl bearing hydrocarbons are different from those without these moieties and cannot be adequately accounted for by the existing acetylene addition and aryl-aryl addition mechanisms. The reaction mechanisms identified in this paper lead to the formation of fluoranthene, aceanthrylene, and acephenanthrylene. Rate constants of the radical-molecule addition and subsequent intramolecular addition steps predict that the 1,2 double bond in acenaphthylene is much more reactive than the 3,4 and 4,5 double bonds. Fluoranthene is the most abundant product produced at high temperatures and the yield of acephenanthrylene is bigger than that of aceanthrylene. The computational results are discussed in light of pyrolysis experiments on CPD-indene and CPD-acenaphthylene mixtures conducted by Prof. Mulholland's research group reported in a previous work.  相似文献   

10.
OH+ C2H2N←C2H3 + NO→CH3 + NCO反应机理的密度泛函理论研究   总被引:1,自引:1,他引:1  
应用密度泛函理论研究了反应通道(a)C2H3 NO→CH3 NCO和(b)C2H3 NO→OH C2H2N的反应机理.在B3LYP/6-31G(d)水平上优化了反应物、中间体、过滤态、产物的几何构型,通过频率分析确定了11个中间体和10个过渡态.所有的反应物、中间体、过渡态、产物都在CCSD/6-311 G(d,P)水平上进行了单点能较正.并讨论了反应的异构化过程.计算结果表明10是能量最低的中间体,比反应物的能量低308.479kJ/mol;过渡态1/3,2/5,3/4,4/8比反应物的能量高,其中3/4是能量最高的过渡态,比反应物的能量高91.894kJ/mol.通道(a)和(b)的理论放热值分别为111.059和96.619kJ/mol.  相似文献   

11.
12.
The initial state-selected time-dependent wave packet approach is employed to study the H' + H(2)O → H'OH + H and H' + HOD → H'OD + H, HOH' + D exchange reactions with both OH bonds in the H(2)O reactant and OH(D) bond in the HOD reactant treated as reactive bonds. The total reaction probabilities for different partial waves, as well as the integral cross sections, which are the exact CC (coupled-channel) results, are first obtained in this study for the H(2)O(HOD) reactant initially in the ground rovibrational state. Because of the shallow C(3v) minimum along the reaction path, the reaction probabilities for the three reactions present several resonance peaks, with one dominant resonance peak just above the threshold. The cross sections for the H' + HOD → HOH' + D reaction are substantially smaller than those for the H' + H(2)O → H'OH + H and H' + HOD → H'OD + H reactions, indicating that the H'/H exchange reactions are much more favored. In the CC calculations, the resonance peaks in the reaction probabilities diminish quickly with the increase in total angular momenta J, resulting in the existence of a clear step-like feature just above the threshold in the cross sections for the title reactions, which manifests the signature of shape resonances in these reactions. In the CS calculations, the resonance peaks on reaction probabilities persist in many partial waves, and thus the resonance structures can no longer survive the partial-wave summation and are washed out completely in the CS cross sections for the title reactions.  相似文献   

13.
We present a theoretical study of the reactions of hydrogen atoms with methane and ethane molecules and isotopomers. High-accuracy electronic-structure calculations have been carried out to characterize representative regions of the potential-energy surface (PES) of various reaction pathways, including H abstraction and H exchange. These ab initio calculations have been subsequently employed to derive an improved set of parameters for the modified symmetrically-orthogonalized intermediate neglect of differential overlap (MSINDO) semiempirical Hamiltonian, which are specific to the H+alkane family of reactions. The specific-reaction-parameter (SRP) Hamiltonian has then been used to perform a quasiclassical-trajectory study of both the H+CH4 and H+C2H6 reactions. The calculated values of dynamics properties of the H+CH4-->H2+CH3 reaction and isotopologues, including alkyl product speed distributions, diatomic product internal-state distributions, and cross sections, are generally in good agreement with experiment and with the results provided by the ZBB3 PES [Z. Xie et al., J. Chem. Phys. 125, 133120 (2006)]. The results of trajectories propagated with the SRP Hamiltonian for the H+C2H6-->H2+C2H5 reaction also agree with experiment. The level of agreement between the results calculated with the SRP Hamiltonian and experiment in both the H+methane and H+ethane reactions indicates that semiempirical Hamiltonians can be improved for not only a specific reaction but also a family of reactions.  相似文献   

14.
The reaction of electronically excited singlet methylene (1CH2) with acetylene (C2H2) was studied using the method of crossed molecular beams at a mean collision energy of 3.0 kcal/mol. The angular and velocity distributions of the propargyl radical (C3H3) products were measured using single photon ionization (9.6 eV) at the advanced light source. The measured distributions indicate that the mechanism involves formation of a long-lived C3H4 complex followed by simple C-H bond fission producing C3H3+H. This work, which is the first crossed beams study of a reaction involving an electronically excited polyatomic molecule, demonstrates the feasibility of crossed molecular beam studies of reactions involving 1CH2.  相似文献   

15.
New high-level quantum chemical calculations have been undertaken to understand the rates and mechanisms of the reactive and associative channels for the reactants C2H2(+) + H2. The reactive channel, which produces C2H3(+) + H, has been shown to be slightly endothermic, confirming earlier calculations at a somewhat lower level and in agreement with some recent experimental work. The associative channel, leading to C2H4+, has been shown to proceed via a transition state with negative energy relative to the reactants, so that association is predicted to be efficient. This result is in conflict with an earlier theoretical study but in agreement with low-temperature experimental measurements.  相似文献   

16.
The authors have investigated CO band emissions arising from the dissociative recombination of HCO(+) and HOC(+) ions with thermal electrons in a flowing afterglow plasma. The quantitative analysis of the band intensities showed that HCO(+) recombination forms the long-lived CO(a (3)Pi) state with a yield of 0.23+/-0.12, while HOC(+) recombination favors formation of CO(a' (3)Sigma(+)) and CO(d (3)Delta) with a combined yield of greater than 0.4. The observed vibrational distribution for the CO(a) state reproduces theoretical predictions quite well. The vibrational distributions for CO(a') and CO(d) are, in part, inverted, presumably as a consequence of a change in CO equilibrium bond length during recombination. The observations are compatible with current knowledge of the potential surfaces of states of HCO and HCO(+).  相似文献   

17.
The complex doublet potential energy surface for the ion-molecule reaction of HCN(+) with C(2)H(4) is investigated at the B3LYP/6-311G(d,p) and CCSD(T)/6-311++G(3df,2pd) (single-point) levels. The initial association between HCN(+) and C(2)H(4) forms three energy-rich addition intermediates, 1 (HCNCH(2)CH(2)(+)), 2 (HC-cNCH(2)CH(2)(+)), and 3 (N-cCHCH(2)CH(2)(+)), which are predicted to undergo subsequent isomerization and decomposition steps. A total of nine kinds of dissociation products, including P(1) (HCN + C(2)H(4)(+)), P(2) (HCNCHCH(2)(+) + H), P(3) (NCCH(2) + CH(3)(+)), P(4) (CN + C(2)H(5)(+)), P(5) (NCCHCH(2)(+) + H(2)), P(6) (HNCCHCH(2)(+) + H), P(7) (c-CHCCH(2)N(+) + H(2)), P(8) (c-NHCCH(2)C(+) + H(2)), and P(9) (HNCCCH(+) + H(2) + H), are obtained. Among the nine products, P(1) is the most abundant product. P(2) is the second feasible product but is much less competitive than P(1). P(3), P(4), P(5), and P(6) may have the lowest yields observed. Other products, P(7), P(8), and P(9), may become feasible at high temperature. Because the intermediates and transition states involved in the most favorable pathway all lie below the reactant, the HCN(+) + C(2)H(4) reaction is expected to be rapid, which is confirmed by experiment. The present calculation results may provide a useful guide for understanding the mechanism of HCN(+) toward other unsaturated hydrocarbons.  相似文献   

18.
Study of n-butane pyrolysis at high temperature in a flow system allows measurement of the sum of the rate constants of the initiation reactions and of the Arrhenius parameters of the reactions Established data for k1/k2 allow estimation of k1 for 951°K and this, with recent thermochemical data, yields the result log k?1 (l.mole s?1) = 8.5, in remarkable agreement with a recent measurement [20] but over si×ty times smaller than conventional assumption. The product k3k4 (l.2mole?2s?2) is found to be associated with the Arrhenius parameters log (A3A4) = 21.90 ± 0.6 and (E3 + E4) = 38.3 ± 2.7 kcal/mole. These values are much higher than would be e×pected on the basis of low temperature estimates. Independent evaluation gives log A4 = 10.5 ± 0.4 (l.mole?1s?1) and E4 = 20.1 ± 1.7 kcal/mole, hence log A3 = 11.4 ± 0.8 (l.mole?1s?1) and E3 = 18.2 ± 3.2 kcal/mole. These values are shown to be entirely consistent with a wide range of results from pyrolytic studies, and it is argued that they further confirm the view that Arrhenius plots for alkyl radical–alkane metathetical reactions are strongly curved, in part due to tunneling and, appreciably, to other as yet unidentified effects. Since there is published evidence that metathetical reactions involving hydrogen atoms show even greater curvature, it is suggested that this may be a characteristic of many metathetical reactions.  相似文献   

19.
Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5+C2H3-->1-butene, (2c) C2H5 + C2H5-->n-butane, and (3c) C2H3+C2H3-->1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [1-C4H8]/[C4H10] ratio was reduced from approximately 1.2 at 760 Torr (101 kPa) to approximately 0.5 at 100 Torr (13.3 kPa) and approximately 0.1 at pressures lower than about 5 Torr (approximately 0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance of C-C and C-H bond ruptures, cyclization, decyclization, and complex decompositions are discussed in terms of energetics and structural properties. The pressure dependence of the product yields were computed and dominant reaction paths in this chemically activated system were determined. Both modeling and experiment suggest that the observed pressure dependence of [1-C4H8]/[C4H10] is due to decomposition of the chemically activated combination adduct 1-C4H8* in which the weaker allylic C-C bond is broken: H2C=CHCH2CH3-->C3H5+CH3. This reaction occurs even at moderate pressures of approximately 200 Torr (26 kPa) and becomes more significant at lower pressures. The additional products detected at lower pressures are formed from secondary radical-radical reactions involving allyl, methyl, ethyl, and vinyl radicals. The modeling studies have extended the predictions of product distributions to different temperatures (200-700 K) and a wider range of pressures (10(-3)-10(5) Torr). These calculations indicate that the high-pressure [1-C4H8]/[C4H10] yield ratio is 1.3+/-0.1.  相似文献   

20.
Reactions between resonance-stabilized radicals play an important role in combustion chemistry. The theoretical prediction of rate coefficients and product distributions for such reactions is complicated by the fact that the initial complex-formation steps and some dissociation steps are barrierless. In this paper direct variable reaction coordinate transition state theory (VRC-TST) is used to predict accurately the association rate constants for the self and cross reactions of propargyl and allyl radicals. For each reaction, a set of multifaceted dividing surfaces is used to account for the multiple possible addition channels. Because of their resonant nature the geometric relaxation of the radicals is important. Here, the effect of this relaxation is explicitly calculated with the UB3LYP/cc-pvdz method for each mutual orientation encountered in the configurational integrals over the transition state dividing surfaces. The final energies are obtained from CASPT2/cc-pvdz calculations with all pi-orbitals in the active space. Evaluations along the minimum energy path suggest that basis set corrections are negligible. The VRC-TST approach was also used to calculate the association rate constant and the corresponding number of states for the C(6)H(5) + H --> C(6)H(6) exit channel of the C(3)H(3) + C(3)H(3) reaction, which is also barrierless. For this reaction, the interaction energies were evaluated with the CASPT2(2e,2o)/cc-pvdz method and a 1-D correction is included on the basis of CAS+1+2+QC/aug-cc-pvtz calculations for the CH(3) + H reference system. For the C(3)H(3) + C(3)H(3) reaction, the VRC-TST results for the energy and angular momentum resolved numbers of states in the entrance channels and in the C(6)H(5) + H exit channel are incorporated in a master equation simulation to determine the temperature and pressure dependence of the phenomenological rate coefficients. The rate constants for the C(3)H(3) + C(3)H(3) and C(3)H(5) + C(3)H(5) self-reactions compare favorably with the available experimental data. To our knowledge there are no experimental rate data for the C(3)H(3) + C(3)H(5) reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号