首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王玲书 《应用数学》2012,25(1):131-139
研究一类具有阶段结构和时滞的捕食模型.通过特征方程分别分析了正平衡点和边界平衡点的局部稳定性,到了系统Hopf分支存在的充分条件.通过规范型理论和中心流型定理,给出了确定Hopf分支方向和分支周期解的稳定性的计算公式.  相似文献   

2.
A ratio-dependent predator–prey model with stage structure for the predator and time delay due to the gestation of the predator is investigated. By analyzing the characteristic equations, the local stability of a positive equilibrium and a boundary equilibrium is discussed, respectively. Further, it is proved that the system undergoes a Hopf bifurcation at the positive equilibrium when τ = τ0. By using an iteration technique, sufficient conditions are derived for the global attractivity of the positive equilibrium. By comparison arguments, sufficient conditions are obtained for the global stability of the boundary equilibrium. Numerical simulations are carried out to illustrate the main results.  相似文献   

3.
In this paper, a delayed eco‐epidemiological model with Holling type II functional response is investigated. By analyzing corresponding characteristic equations, the local stability of each of the feasible equilibria and the existence of Hopf bifurcations at the disease‐free equilibrium, the susceptible predator‐free equilibrium and the endemic‐coexistence equilibrium are established, respectively. By means of Lyapunov functionals and LaSalle's invariance principle, sufficient conditions are derived for the global stability of the endemic‐coexistence equilibrium, the disease‐free equilibrium, the susceptible predator‐free equilibrium and the predator‐extinction equilibrium of the system, respectively. Numerical simulations are carried out to illustrate the theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, an eco‐epidemiological model with Holling type‐III functional response and a time delay representing the gestation period of the predators is investigated. In the model, it is assumed that the predator population suffers a transmissible disease. The disease basic reproduction number is obtained. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the disease‐free equilibrium and the endemic‐coexistence equilibrium are established, respectively. By using the persistence theory on infinite dimensional systems, it is proved that if the disease basic reproduction number is greater than unity, the system is permanent. By means of Lyapunov functionals and LaSalle's invariance principle, sufficient conditions are obtained for the global stability of the endemic‐coexistence equilibrium, the disease‐free equilibrium and the predator‐extinction equilibrium of the system, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, an eco-epidemiological model with diseases in the predator and Holling type-III functional response is analyzed. A time delay due to the gestation of the predator is considered in this model. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the disease-free equilibrium and the endemic-coexistence equilibrium are established respectively. By using Lyapunov functionals and LaSalle''s invariance principle, sufficient conditions are obtained for the global stability of the predator-extinction equilibrium, the disease-free equilibrium and the endemic-coexistence equilibrium respectively. Finally, numerical simulations are performed to illustrate the theoretical results.  相似文献   

6.
In this paper, a diffusive predator–prey system with Holling III functional response and nonconstant death rate subject to Neumann boundary condition is considered. We study the stability of equilibria, and Turing instability of the positive equilibrium. We also perform a detailed Hopf bifurcation analysis to PDE system, and derive conditions for determining the bifurcation direction and the stability of the bifurcating periodic solution. In addition, some numerical simulations are carried out.  相似文献   

7.
A delayed predator-prey model with disease in the predator and stage structure for the prey is investigated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria is studied. The existence of Hopf bifurcations at the disease-free equilibrium and the coexistence equilibrium are addressed, respectively. By using Lyapunov functions and LaSalle invariant principle, sufficient conditions are derived for the global stability of the trivial equilibrium, the predator-extinction equilibrium and the disease-free equilibrium, respectively. Further, sufficient conditions are derived for the global attractiveness of the coexistence equilibrium of the proposed system.  相似文献   

8.
In paper, a predator–prey model with modified Holling–Tanner functional response and time delay is discussed. It is proved that the system is permanent under some appropriate conditions. The local stability of the equilibria is investigated. By constructing a suitable Lyapunov functional, sufficient conditions are derived for the global stability of the positive equilibrium of the model.  相似文献   

9.
We consider a predator–prey system of Lotka–Volterra type with time delays and stage structure for prey. By analyzing the corresponding characteristic equations, the local stability of the equilibria is investigated and Hopf bifurcations occurring at the positive equilibrium under some conditions are demonstrated. The mathematical tools which enable us to obtain the sufficient conditions, guaranteeing the global asymptotical stability of the equilibria, are the well-known Kamke comparison theorem and an iteration technique. Numerical simulations are carried out to illustrate our theoretical results.  相似文献   

10.
Based on the availability of prey and a simple predator–prey model, we propose a delayed predator–prey model with predator migration to describe biological control. We first study the existence and stability of equilibria. It turns out that backward bifurcation occurs with the migration rate as bifurcation parameter. The stability of the trivial equilibrium and the boundary equilibrium is delay-independent. However, the stability of the positive equilibrium may be delay-dependent. Moreover, delay can switch the stability of the positive equilibrium. When the positive equilibrium loses stability, Hopf bifurcation can occur. The direction and stability of Hopf bifurcation is derived by applying the center manifold method and the normal form theory. The main theoretical results are illustrated with numerical simulations.  相似文献   

11.
In this paper, we present a stability analysis of a Lotka-Volterra commensal symbiosis model subject to Allee effect on the unaffected population which occurs at low population density. By analyzing the Jacobian matrix about the positive equilibrium, we show that the positive equilibrium is locally asymptotically stable. By applying the differential inequality theory, we show that the system is permanent, consequently, the boundary equilibria of the system is unstable. Finally, by using the Dulac criterion, we show that the positive equilibrium is globally stable. Although Allee effect has no influence on the final densities of the predator and prey species, numeric simulations show that the system subject to an Allee effect takes much longer time to reach its stable steady-state solution, in this sense that Allee effect has unstable effect on the system, however, such an effect is controllable. Such an finding is greatly different to that of the predator-prey model.  相似文献   

12.
A stage-structured predator–prey system with Holling type-II functional response and time delay due to the gestation of predator is investigated. By analyzing the characteristic equations, the local stability of each of feasible equilibria of the system is discussed and the existence of a Hopf bifurcation at the coexistence equilibrium is established. By means of the persistence theory on infinite dimensional systems, it is proven that the system is permanent if the coexistence equilibrium exists. By using Lyapunov functionals and LaSalle invariant principle, it is shown that the trivial equilibrium is globally stable when both the predator-extinction equilibrium and the coexistence equilibrium are not feasible, and that the predator-extinction equilibrium is globally asymptotically stable if the coexistence equilibrium does not exist, and sufficient conditions are derived for the global stability of the coexistence equilibrium. Numerical simulations are carried out to illustrate the main theoretical results.  相似文献   

13.
A stage-structured predator–prey system with delays for prey and predator, respectively, is proposed and analyzed. Mathematical analysis of the model equations with regard to boundedness of solutions, permanence and stability are analyzed. Some sufficient conditions which guarantee the permanence of the system and the global asymptotic stability of the boundary and positive equilibrium, respectively, are obtained.  相似文献   

14.
In this paper, a prey-predator model with reaction-diffusion is investigated under homogenous Neumann boundary condition. By taking food ingestion and species’ moving into account, model is further coupled with Hölling’s type II function response and nonlocal delay. Sufficient conditions for the global stability of three equilibria, i.e. positive, semi-trivial and trivial steady states are mainly derived by Lyapunov functional, respectively. Results show that intra-specific competition benefits the coexistence of prey and predator. Numerical simulations are performed to illustrate the analytical results.  相似文献   

15.
In this paper, we investigate phytoplankton-zooplankton models with toxic substances effect and two different kinds of predator functional responses. For Holling type II predator functional response, it is shown that the local stability of the positive equilibrium implies global stability if there exists a unique positive equilibrium. When there exist multiple positive equilibria, the local stability of the positive equilibrium with small phytoplankton population density implies that the model occurs bistable phenomenon. These results also hold for Holling type III predator functional response under certain conditions.  相似文献   

16.
In this paper, we consider a ratio-dependent predator–prey system with diffusion. And we mainly discuss the following problems: (1) stability and Hopf bifurcation analysis of the positive equilibrium for the reduced ODE system; (2) Diffusion-driven instability of the equilibrium solution; (3) Hopf bifurcations for the corresponding diffusion system with homogeneous Neumann boundary conditions. In order to verify our theoretical results, some numerical simulations are also included, respectively.  相似文献   

17.
This article is concerned with a delayed Lotka–Volterra two-species prey–predator diffusion system with a single discrete delay and homogeneous Dirichlet boundary conditions. By applying the implicit function theorem, the asymptotic expressions of positive equilibrium solutions are obtained. And then, the asymptotic stability of positive equilibrium solutions is investigated by linearizing the system at the positive equilibrium solutions and analyzing the associated eigenvalue problem. It is demonstrated that the positive equilibrium solutions are asymptotically stable when the delay is less than a certain critical value and unstable when the delay is greater than this critical value. In addition, it is also found that the system under consideration can undergo a Hopf bifurcation when the delay crosses through a sequence of critical values. Finally, to verify our theoretical predictions, some numerical simulations are also included.  相似文献   

18.
A ratio-dependent predator-prey model with time lag for predator is proposed and analyzed. Mathematical analyses of the model equations with regard to boundedness of solutions, nature of equilibria, permanence, and stability are analyzed. We note that for a ratio-dependent system local asymptotic stability of the positive steady state does not even guarantee the so-called persistence of the system and, therefore, does not imply global asymptotic stability. It is found that an orbitally asymptotically stable periodic orbit exists in that model. Some sufficient conditions which guarantee the global stability of positive equilibrium are given.  相似文献   

19.
该文研究了时滞对一个带Neumann边值的捕食者-食饵的反应扩散系统的影响.通过对特征根的分析,讨论了非负平衡解的稳定性和Hopf分支的存在性.应用规范型方法和中心流形理论,文章讨论了Hopf分支周期解的稳定性和分支方向。  相似文献   

20.
A class of Beddington-DeAngelis' type predator-prey dynamic system with prey and predator both having linear density restriction is considered. By using the qualitative methods of ODE, the existence and uniqueness of positive equilibrium and its global asymptotic stability are analyzed. The direct criterions for local stability of positive equilibrium and existence of limit cycle are also established when inference parameter of predator is small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号