首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron-positron pair production from vacuum in an electromagnetic field created by two counterpropagating focused laser pulses interacting with each other is analyzed. The dependence of the number of produced pairs on the intensity of a laser pulse and the focusing parameter is studied with a realistic three-dimensional model of the electromagnetic field of the focused wave, which is an exact solution of the Maxwell equations. It has been shown that e+e? pair production can be experimentally observed when the intensity of each beam is I~1026 W/cm2, which is two orders of magnitude lower than that for a single pulse.  相似文献   

2.
The works dealing with the theory of e+e pair production from vacuum under the action of highintensity laser radiation are reviewed. The following problems are discussed: pair production in a constant electric field E and time-variable homogeneous field E(t); the dependence of the number of produced pairs \({N_{{e^ + }{e^ - }}}\) on the shape of a laser pulse (dynamic Schwinger effect); and a realistic three-dimensional model of a focused laser pulse, which is based on exact solution of Maxwell’s equations and contains parameters such as focal spot radius R, diffraction length L, focusing parameter Δ, pulse duration τ, and pulse shape. This model is used to calculate \({N_{{e^ + }{e^ - }}}\) for both a single laser pulse (n = 1) and several (n ≥ 2) coherent pulses with a fixed total energy that simultaneously “collide” in a laser focus. It is shown that, at n ? 1, the number of pairs increases by several orders of magnitude as compared to the case of a single pulse. The screening of a laser field by the vapors that are generated in vacuum, its “depletion,” and the limiting fields to be achieved in laser experiments are considered. The relation between pair production, the problem of a quantum frequency-variable oscillator, and the theory of groups SU(1, 1) and SU(2) is discussed. The relativistic version of the imaginary time method is used in calculations. In terms of this version, a relativistic theory of tunneling is developed and the Keldysh theory is generalized to the case of ionization of relativistic bound systems, namely, atoms and ions. The ionization rate of a hydrogen-like ion with a charge 1 ≤ Z ≤ 92 is calculated as a function of laser radiation intensity (F and ellipticity ρ.  相似文献   

3.
A periodic structure is induced at the surface of a metal target exposed to a series of p-polarized 200-femtosecond laser pulses with intensity close to the melting threshold of the target material. The period of the structure is determined by the interference between the incident pump wave and the surface electromagnetic wave. Exposure of the obtained structure to the same laser pulse, but with an intensity of ~1016 W/cm2, provides resonant excitation of the surface electromagnetic waves at the plasma-vacuum interface. This leads to an increase in the X-ray output and the temperature of plasma hot electrons.  相似文献   

4.
罗牧华  张秋菊 《中国物理 B》2011,20(8):85201-085201
The influence of time-dependent polarization on attosecond pulse generation from an overdense plasma surface driven by laser pulse is discussed analytically and numerically.The results show that the frequency of controlling pulse controls the number and interval of the generated attosecond pulse,that the generation moment of the attosecond pulse is dominated by the phase difference between the controlling and driving pulses,and that the amplitude of the controlling pulse affects the intensity of the attosecond pulse.Using the method of time-dependent polarization,a "single" ultra-strong attosecond pulse with duration τ≈ 8.6 as and intensity I ≈ 3.08 × 10 20 W·cm-2 can be generated.  相似文献   

5.
The results of a study of the generation of harmonics from a laser plasma resulting from the interaction of radiation of femtosecond duration (λ=1.06 μm, t=475 fs, and I~2×1017 W cm?2) with aluminum targets are presented. The observed frequency shift of harmonics to the short-wavelength region (1.6 and 5.1 nm for the second and fifth harmonics, respectively) is determined by a collisionless absorption resulting from an anomalous skin effect. The efficiencies of conversion into the second and fifth harmonics in an s-polarized pumping field were lower than the conversion efficiencies in a p-polarized pumping field by a factor of eight and a factor of two, respectively (for intensities I<1017 W cm?2). With a further increase in the pumping intensity, these values decreased to 0.8 and 0.5, respectively. The mechanisms of such behavior of the conversion process are considered.  相似文献   

6.
We present a short review of recent progress in studying QED effects within the interaction of ultra-relativistic laser pulses with vacuum and e ? e + plasma. Current development in laser technologies promises very rapid growth of laser intensities in the near future. Two exawatt class facilities (ELI and XCELS, Russia) in Europe are already in the planning stage. Realization of these projects will make available a laser intensity of ~ 1026?W/cm2 or even higher. Therefore, discussion of nonlinear optical effects in vacuum are becoming compelling for experimentalists and are currently gaining much attention. We show that, in spite of the fact that the expected field strength is still essentially less than E S = m 2 c 3/e? = 1.32 · 1016?V/cm, the nonlinear vacuum effects will be accessible for observation at the ELI and XCELS facilities. The most promissory effect for observation is pair creation by a laser pulse in vacuum. It is shown, that at intensities ~ 5 · 1025?W/cm2, creation even of a single pair is accompanied by the development of an avalanche QED cascade. There exists a distinctive feature of the laser-induced cascades, as compared with the air showers arising due primarily to cosmic rays entering the atmosphere. In our case the laser field plays not only the role of a target (similar to a nucleus in the case of air showers) but is also responsible for the acceleration of slow particles. It is shown that the effect of pair creation imposes a natural limit for the attainable laser intensity and, apparently, the field strength EE S is not accessible for a pair-creating electromagnetic field at all.  相似文献   

7.
We simulate the response of He+ exposed simultaneously to fundamental and 27th harmonic pulses from an intense Ti:sapphire laser. High-order harmonic emission from He+ is enhanced by 17 orders of magnitude compared with the case of the fundamental pulse alone. Moreover, while an individual 10 fs laser with a fundamental wavelength of 800 nm and a peak intensity of 3×1014 W/cm2, or its 27th harmonic pulse with a peak intensity of 1013 W/cm2, ionizes no more than 5×10-6 of He+, their combined pulses lead to a surprisingly high He2+ yield of 17%. The underlying mechanism is either harmonic generation from a coherent superposition of states or two-color frequency mixing, depending on the laser wavelength. PACS 32.80.Rm; 42.50.Hz; 42.65.Ky  相似文献   

8.
辛国国  叶地发  赵清  刘杰 《物理学报》2011,60(9):93204-093204
本文采用三维半经典再散射模型研究了He原子在高光强(1.5×1015 W/cm2)、少周波激光脉冲作用下的非序列双电离问题,重点分析了沿激光电场极化方向的动量关联谱.发现两个电子沿相反方向发射的比例明显比中等光强区(7×1014 W/cm2)和低光强区(2.5×1014 W/cm2),以及同等光强的长脉冲情形都偏高, 同时V形结构也更加明显.通过轨道"回溯"分析, 进一步深入 关键词: 强场 非序列双电离 再散射  相似文献   

9.
Spectral analysis of K-shell X-ray emission of magnesium plasma, produced by laser pulses of 45 fs duration, focussed up to an intensity of ~1018 W cm?2, is carried out. The plasma conditions prevalent during the emission of X-ray spectrum were identified by comparing the experimental spectra with the synthetic spectra generated using the spectroscopic code PrismSPECT. It is observed that He-like resonance line emission occurs from the plasma region having sub-critical density, whereas K-α emission arises from the bulk solid heated to a temperature of 10 eV by the impact of hot electrons. K-α line from Be-like ions was used to estimate the hot electron temperature. A power law fit to the electron temperature showed a scaling of I 0.47 with laser intensity.  相似文献   

10.
The angular distribution of CH3I is investigated experimentally using a single Fourier transform-limited laser pulse and a pulse train, where a 90-fs 800-nm linearly polarized laser field with a moderate intensity of 2.8×1013 W/cm2 is used. The dynamic alignment is demonstrated in a single pulse experiment. Moreover, a pulse train is used to optimize the molecular alignment, and the alignment degree is almost identical to that with the single pulse. The results are analysed by using chirped femtosecond laser pulses, and it demonstrates that the structure of pulse train rather than its effective duration is crucial to the molecular alignment.  相似文献   

11.
The spectral and temporal intensity distribution expression for the chirped femtosecond laser pulse diffracted by a rectangle reflection grating is derived. The effects of the chirped coefficient on the spatiotemporal and spectral characteristics are theoretically investigated in detail, and a criterion for judging whether or not the diffraction pulse is just split into two independent pulses in the temporal domain is obtained. The results show that the envelope curve of spectral intensity on the diffraction axis is more blue-shift, and its full width at e? 1 maximum is wider for bigger chirped coefficient. The principal maximum on the temporal axis can split into two independent principal maximums for enough height from the upper and the nether reflection surface of the grating. Each principal maximum splits into two smooth pulses, namely one principal pulse and one secondary pulse, and the secondary pulse gradually increases with the increasing of the chirped coefficient; the duration of two principal pulses increases with the increasing of the height of the upper and the nether reflection surface of the grating.  相似文献   

12.
By focusing 40-TW, 30-fs laser pulses to the peak intensity of 1019 W/cm2 onto a supersonic He gas jet, we generate quasi-monoenergetic electron beams for plasma density in the specific range 1.5×1019 cm-3≤ne≤3.5×1019 cm-3. We show that the energy, charge, divergence and pointing stability of the beam can be controlled by changing ne, and that higher electron energies and more stable beams are produced for lower densities. The observed variations are explained physically by the interplay among pump depletion and dephasing between accelerated electrons and plasma wave. Two-dimensional particle-in-cell simulations support the explanation by showing the evolution of the laser pulse in plasma and the specifics of electron injection and acceleration. An optimized quasi-monoenergetic beam of over 300 MeV and 10 mrad angular divergence is demonstrated at a plasma density of ne≃1.5×1019 cm-3. PACS 52.35.-g; 52.38.Hb; 52.38.Kd; 52.65.-y  相似文献   

13.
We investigate laser pulse influence on aluminum target in irradiance range 109 to 1016 W/cm2, pulse duration between 10−8 and 10−15 s, Gaussian time profile with wavelength of 0.8 μm. For all computations energy density was 10 J/cm2. Plasma in the evaporated material is generated at the energy density above 10 J/cm2as the modeling showed.Long and short laser pulses distinguish by the mechanisms of energy transformation. For short laser pulses there is volumetric energy absorption, together with rapid phase transitions it lead to overheating in solid and liquid states, overheated solid temperature rises up to (6-8)Tm. Under influence of the energy saved in overheated solid, duration of the phase transitions becomes nanosecond, which is several orders of magnitude longer than laser pulse.  相似文献   

14.
High gradient laser plasma is formed by focused KrF laser pulses (248.3 nm, 450 fs, 1013 W/cm2) on liquids (water, styrene) and solids (silicon, aluminum, and polyimide). The hydrodynamic expansion of the plasma was studied by measuring the blue Doppler-shift of reflected probe pulses which was produced by a delayed dye laser (496.6 nm, 450 fs). The Doppler-shift corresponds to the velocity of the reflecting surface of the plasma which is defined by the critical electron density. Expansion is investigated as a function of delay time and laser intensity. The reflecting surface of the plasma accelerates over 1–2 ps after the onset of the ablating laser pulse. With increasing intensity up to 2×1013 W/cm2 the maximum average velocities are monotonously increasing up to 1–2×105 m/s. PACS 52.38.Kd; 52.50.Jm, 52.70.Kz  相似文献   

15.
We report neutron production by the 2H(d, n)3He reaction induced upon the illumination of a solid nanostructured target by femtosecond laser pulses of intensity 20 PW/cm2 (1 PW = 1015 W). The target was structured through the preliminary illumination by a laser pulse of the same intensity.  相似文献   

16.
We consider scattering of a photon on a short intense laser pulse at high energy. We argue that for ultra-short laser pulses the interaction is coherent over the entire length of the pulse. At low pulse intensity I the total cross section for electron–positron pair production is proportional to I  . However, at pulse intensities higher than the characteristic value IsIs, the total cross section saturates – it becomes proportional to the logarithm of intensity. This non-linear effect is due to multi-photon interactions. We derive the total cross section for pair production at high energies by resuming the multi-photon amplitudes to all orders in intensity. We calculate the saturation intensity IsIs and show that it is significantly lower than the Schwinger's critical value. We discuss possible experimental tests.  相似文献   

17.
A novel parametric generator-amplifier system is discussed which for the first time allows the generation of tunable pulses in the infrared with substantial pulse shortening and with high energy conversion of up to 20%. Starting with an intense laser pulse of a mode-locked Nd: glass laser system of ≈ 8 ps, a signal pulse at ≈ 6500 cm-1 is produced by a single path parametric generator. This signal pulse is subsequently amplified generating an intense idler pulse in the IR. Varying the time delay between the signal and pump pulse in the amplifier stage, the pulse duration of signal and idler is readily adjusted. The shortest pulses are nearly bandwidth limited of duration 0.5 ps with energy conversion exceeding 5% in the frequency range around 6500 cm-1.  相似文献   

18.
李伟昌  王兆华  刘成  滕浩  魏志义 《物理学报》2011,60(12):124210-124210
从啁啾脉冲放大的基本理论出发,详细计算了啁啾脉冲在多通预放大中各个时间点的增益情况,并设计了一个十通预放大器进行了实验研究. 结果显示,在抽运通量为1.6 J/cm2的非饱和放大情况下,种子脉冲经过十通预放大之后信噪比由10-5提高到10-7. 这表明在非饱和抽运通量下,多通预放大器可以有效提高激光脉冲的信噪比. 关键词: 多通预放大 信噪比 飞秒钛宝石激光器  相似文献   

19.
A comparative experimental study of the X-ray emission in the water-window spectral region has been performed using carbon nanofibers (CNFs) of different sizes and graphite plate targets, irradiated with ultra-short (Ti:sapphire) laser pulses. More than an order of magnitude enhancement in the X-ray yield is observed from CNFs of 60-nm diameter with respect to graphite targets. The X-ray emission from CNFs of 160-nm diameter was also high. The integrated X-ray yield of these carbon-based targets scales with the laser intensity (I L) as IL ~ 1.3-1.4I_{\mathrm{L}}^{\sim 1.3-1.4} in the intensity range of 4×1016–4×1017 W/cm2. The effect of the laser pulse duration on the X-ray emission from the CNFs was also studied by varying the pulse duration from 45 fs up to 3 ps at a constant fluence of 2×104 J/cm2. The optimum laser pulse duration for maximum X-ray emission increases with the diameter of the CNFs used. The results are explained from physical considerations of heating and hydrodynamic expansion of the CNF plasma in which resonance field enhancement takes place while passing through two times the critical density. The results add to the efforts towards achieving an efficient low-cost water-window X-ray source for microscopy.  相似文献   

20.
Summary The spectrum of radiation emitted by an electron colliding with a nucleus in the presence of a monochromatic laser field is calculated. The Coulomb potential is treated at all orders and the radiation is seen as spontaneous transition between two free states. The kinetic energy of the electron isT∈100−3000 eV and the laser intensityI∈1010−1013 W/cm2; in this condition we see strong enhancement in thebremsstrahlung cross-section when the emitted frequency is an integral multiple of the laser frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号