首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The non-isothermal devitrification of lithium germanate glasses, examined by DTA and XRD, is reported and discussed. The glass compositions are expressed by the general formula:xLi2O(1?x)GeO2 withx=0.050, 0.125, 0.167, 0.200 and 0.250. All the glasses studied, unlike GeO2 glass, exhibit internal crystal nucleation without the addition of any nucleating agent. The devitrification processes occur in one or more steps. Phases which crystallized at each step are identified and crystallization mechanisms proposed. These crystallization mechanisms are related to structures of the crystallizing phases. Activation energy values as well as those for glass transition temperatures, do not vary linearly with increase in Li2O content but pass through a maximum atx=0.200.  相似文献   

2.
Li2O–Cr2O3–GeO2–P2O5 based glasses were synthesized by a conventional melt-quenching method and successfully converted into glass-ceramics through heat treatment. Experimental results of DTA, XRD, ac impedance techniques and FESEM indicated that Li1.4Cr0.4Ge1.6(PO4)3 glass-ceramics treated at 900 °C for 12 h in the Li1 + xCrxGe2 − x(PO4)3 (x = 0–0.8) system exhibited the best glass stability against crystallization and the highest ambient conductivity value of 6.81 × 10−4 S/cm with an activation energy as low as 26.9 kJ/mol. In addition, the Li1.4Cr0.4Ge1.6(PO4)3 glass-ceramics displayed good chemical stability against lithium metal at room temperature. The good thermal and chemical stability, excellent conducting property, easy preparation and low cost make it promising to be used as solid-state electrolytes for all-solid-state lithium batteries.  相似文献   

3.
The crystal structure of the compound Li3Zn0.5GeO4 has been determined and refined by means of three-dimensionalFourier syntheses and least squares. Li3Zn0.5GeO4 crystallizes orthorhombic with space groupD 2h 16 -Pmnb (No. 62) and the lattice parametersa=6.29,b=10.74 andc=5.17 Å. The crystal structure consists of isolated [GeO4] tetrahedra, which are linked together by [(Li,Zn)O4] tetrahedra analogous to Li3PO4(h). An additional eight-fold position is partly occupied by two lithium atoms. The occupancy of this position may vary according to the observed range of composition, which lies between Li3.8Zn0.1GeO4 and Li2.6Zn0.7GeO4.
  相似文献   

4.
DTA was used to study thermal properties and thermal stability of (50-x)Li2O-xTiO2-50P2O5 (x=0–10 mol%) and 45Li2Ot-yTiO2-(55-y)P2O5 (y=5–20 mol%) glasses. The addition of TiO2 to lithium phosphate glasses results in a non-linear increase of glass transition temperature. All prepared glasses crystallize under heating within the temperature range of 400–540°C. The lowest tendency towards crystallization have the glasses with x=7.5 and y=10 mol% TiO2. X-ray diffraction analysis showed that major compounds formed by annealing of the glasses were LiPO3, Li4 P2O7, TiP2O7 and NASICON-type LiTi2(PO4)3. DTA results also indicated that the maximum of nucleation rate for 45Li2O-5TiO2-50P2O5 glass is close to the glass transition temperature.  相似文献   

5.
A New Oxogermanate: Li8GeO6 ? Li8O[GeO4] Transparent colourless single crystals of Li8GeO6(P63cm, a = 550.09(8), c = 1072.2(3) pm, Z = 2; 4-circle-diffractometer Siemens AED 2, MoKα; 326 Io(hkl), R = 2.4%, Rw = 2.0%), have been prepared. As by-product we always got colourless isometric single crystals of Li4GeO4. For the first time we could grow single crystals of Li8SiO6 of suitable size and quality. Our structure refinement confirms the assumed structure model [2]: Li8GeO6 and Li8SiO6 are isotypic with Li8CoO6[3] (Li8SiO6: a = 542.43(8), c = 1062.6(2) pm, Z = 2; 4-circle-diffractometer Siemens AED 2, MoKα; 306 Io(hkl), R = 3.6%, Rw= 3.0%). The known crystal structure of Li4GeO4 [4] is confirmed and refined (Cmcm, a = 776.6(2), b = 735.7(3), c = 604.9(2) pm, Z = 4; 4-circle-diffractometer Siemens AED 2, MoKα, 298 Io(hkl), R = 1.9%, Rw = 1.4%). The Madelung Part of Lattice Energy, MAPLE, and Effective coordination-Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, are calculated.  相似文献   

6.
Orthorhombic lithium zinc molybdate was first chosen and explored as a candidate for double beta decay experiments with 100Mo. The phase equilibria in the system Li2MoO4-ZnMoO4 were reinvestigated, the intermediate compound Li2Zn2(MoO4)3 of the α-Cu3Fe4(VO4)6 (lyonsite) type was found to be nonstoichiometric: Li2−2xZn2+x(MoO4)3 (0≤x≤0.28) at 600 °C. The eutectic point corresponds to 650 °C and 23 mol% ZnMoO4, the peritectic point is at 885 °C and 67 mol% ZnMoO4. Single crystals of the compound were prepared by spontaneous crystallization from the melts and fluxes. In the structures of four Li2−2xZn2+x(MoO4)3 crystals (x=0; 0.03; 0.21; 0.23), the cationic sites in the face-shared octahedral columns were found to be partially filled and responsible for the compound nonstoichiometry. It was first showed that with increasing the x value and the number of vacancies in M3 site, the average M3-O distance grows and the lithium content in this site decreases almost linearly. Using the low-thermal-gradient Czochralski technique, optically homogeneous large crystals of lithium zinc molybdate were grown and their optical, luminescent and scintillating properties were explored.  相似文献   

7.
Zusammenfassung Die Kristallstruktur von Li2GeO3 wird mit Hilfe dreidimensionalerFourier-Synthesen und nach der Methode der kleinsten Quadrate bestimmt. Li2GeO3 ist isotyp mit Li2SiO3 und enthält [GeO3]2–-Ketten (Zweiereinfachkette). Die Gitterparameter der rhombischen Elementarzelle (C 2v 12 –Cmc21) betragen:a=9,630,b=5,465 undc=4,850 Å. Als mittlere interatomare Abstände wurden erhalten: Ge–O=1,74 und Li–O=2,01 Å.
The crystal structure of Li2GeO3 has been determined by means of 3-dimensional Fourier syntheses and least-squares method. Li2GeO3 is isostructural with Li2SiO3, containing [GeO3]2–-chains (Zweiereinfachkette). The lattice parameters of the orthorhombic cell (C 2v 12 –Cmc21) are:a=9,630;b=5,465 andc=4,850 Å. The average interatomic distances are found to be: Ge–O=1,74 and Li–O=2,01 Å.


Mit 3 Abbildungen  相似文献   

8.
With Li7Si2NO6, a new member of the family of lithium oxonitridosilicates with a so far unseen structure type could be synthesized. Using a high-temperature solid-state reaction in open nickel crucibles under nitrogen flow, it was possible to obtain single crystals from the starting materials SiO2, Li3N, and Li2O at temperatures of 900 °C. Single crystal X-ray diffraction data yielded lattice parameters of a=5.0934(2), b=7.4128(2), c=8.5918(2) Å, α=75.16(1)°, β=87.36(1)°, γ=73.01(1)° and a cell volume of V=299.75(2) Å3. The compound, crystallizing in the triclinic space group P (no. 2), consists of a highly condensed anionic network built up by [SiNO3]-, [LiO4]-, and [LiN2O2]-tetrahedra as well as lithium in octahedral coordination as completing cation. With an activation barrier of 695 meV for lithium migration, Li7Si2NO6 is a potential lithium-ion conductor. The structure allows a classification not only as a sorosilicate but also as a tecto-lithosilicate and most precisely as a lithium oxonitridolithosilicate, when the different coordinations of the lithium ions are taken into account. Interestingly, the new compound is none of the several proposed representatives of the lithium oxonitridosilicates, thus expanding this substance class unexpectedly.  相似文献   

9.
Zusammenfassung Die Kristallstruktur der Verbindung Li2[Ge7O15] wird mit Hilfe dreidimensionaler Patterson- und Fourier-Synthesen bestimmt und nach der Methode der kleinsten Quadrate verfeinert. Die Gitterparameter der orthorhombischen Elementarzelle (Pbcn — D 2h 14 ) betragen:a=7,36,b=16,76 undc=9,69 Å. Die Struktur enthält stark gewellte Schichten aus [GeO4]-Tetraedern, die über [GeO6]-Oktaeder zu einem dreidimensionalen Gerüst verknüpft sind; sie läßt sich durch die Formel Li2[Ge(Ge2O5)3] charakterisieren. Als mittlere Ge–O-Abstände werden erhalten: 1,735 Å (K.Z. 4) und 1,893 Å (K.Z. 6).
The crystal structure of Li2[Ge7O15]
The crystal structure of Li2[Ge7O15] has been determined by means of three-dimensional Patterson and electron density syntheses, and refined by least-squares method. The lattice parameters of the orthorhombic unit cell (Pbcn-D 2h 14 ) are:a=7.36,b=16.76 andc=9.69 Å. The crystal structure contains strongly puckered layers of [GeO4]-tetrahedra linked by [GeO6]-octahedra to form a three-dimensional framework; the structure can be characterized by the formula Li2[Ge(Ge2O5)3]. The averaged Ge–O-distances are found to be: 1.735 Å (c. n. 4) and 1.893 Å (c.n. 6).


Mit 1 Abbildung  相似文献   

10.
Some K2O-TiO2-GeO2 glasses with a large amount of TiO2 contents (15-25 mol%) such as 25K2O-25TiO2-50GeO2 have been prepared, and their electronic polarizability, Raman scattering spectra, and crystallization behavior are examined to clarify thermal properties and structure of the glasses and to develop new nonlinear optical crystallized glasses. It is proposed that the glasses consist of the network of TiO6 and GeO4 polyhedra. The glasses show large optical basicities of Λ=0.88-0.92, indicating the high polarizabity of TiOn (n=4-6) polyhedra in the glasses. K2TiGe3O9 crystals are formed through crystallization in all glasses prepared in the present study. In particular, 20K2O-20TiO2-60GeO2 glass shows bulk crystallization and 18K2O-18TiO2-64GeO2 glass exhibits surface crystallization giving the c-axis orientation. The crystallized glasses show second harmonic generations (SHGs), and it is suggested that the distortion of TiO6 octahedra in K2TiGe3O9 crystals induces SHGs.  相似文献   

11.
Zusammenfassung Die Kristallstruktur der Verbindung LiNa[Ge4O9] wird durch dreidimensionale Patterson- und Fourier-Synthesen bestimmt und mit Hilfe der Methode der kleinsten Quadrate verfeinert. Die rhombische Elementarzelle (Pcca-D 2h 8 ) mit den Abmessungen:a=9,31,b=4,68,c=15,88 Å enthält 4 Formeleinheiten. Die Struktur wird aus [GeO3] n -Ketten mit tetraedrisch koordiniertem Germanium aufgebaut, die über [GeO6]-Oktaeder zu einem dreidimensionalen Gerüst vernetzt sind. Als mittlere interatomare Ge-O-Abstände wurden erhalten: 1,758 [4] und 1,866[6] Å. Die Verbindung LiNa[Ge4O9] stellt ein Endglied der Mischreihe Li2–x Na x [Ge4O9] dar.
Crystal structure of LiNa[Ge4O9]
The crystal structure of LiNa[Ge4O9] has been determined by means of three-dimensional Patterson and electron density syntheses and refined by least-squares methods. The orthorhombic unit cell (Pcca-D 2h 8 ) having the lattice parametersa=9.31,b=4.68 andc=15.88 Å contains 4 formula units. The crystal structure consists of [GeO3] n -chains of tetrahedrally coordinated Ge-atoms which are connected by [GeO6]-octahedra to form a three-dimensional framework. The interatomic Ge-O-distances are found to be 1.758[4] and 1.866[6] Å. The compound LiNa[Ge4O9] represents a member of the solid solution series Li2–x Na x [Ge4O9].
  相似文献   

12.
The crystal structures of vanadates Li1-2xCo1+xVO4 with x = 0 and 0.25 have been studied by a full pattern analysis. It has been shown that in cubic spinel LiCoVO4 (space group Fd3m), the 8a tetrahedral sites contain a majority of vanadium and a small amount of lithium; all cobalt, lithium, and a small amount of vanadium occupy the 16d octahedral sites. Li0.5Co1.25VO4 crystals belong to the rhombic system (Imma space group) with unit cell parameters a = 5.939(1), b = 5.810(1), and c = 8.303(1). On substitution of lithium by cobalt according to the scheme 2Li+ Co2+ + , half of the lithium and 70% of the vacancies formed are in the 4a octahedral sites, and onethird of lithium and most of cobalt occupy the 4d octahedral sites. The 4e tetrahedral sites are completely occupied by vanadium and lithium in a ratio of 0.92/0.08. The interatomic distances in LiCoVO4 and Li0.5Co1.25VO4 are calculated, and the sizes of lithium ion transport channels are evaluated.  相似文献   

13.
The new stannide Li2AuSn2 was prepared by reaction of the elements in a sealed tantalum tube in a resistance furnace at 970 K followed by annealing at 720 K for five days. Li2AuSn2 was investigated by X‐ray diffraction on powders and single crystals and the structure was refined from single‐crystal data: Z=4, I41/amd, a=455.60(7), c=1957.4(4) pm, wR2=0.0681, 278 F2 values, 10 parameters. The gold atoms display a slightly distorted tetrahedral tin coordination with Au? Sn distances of 273 pm. These tetrahedra are condensed through common corners leading to the formation of two‐dimensional AuSn4/2 layers. The latter are connected in the third dimension through Sn? Sn bonds (296 pm). The lithium atoms fill distorted hexagonal channels formed by the three‐dimensional [AuSn2] network. Modestly small 7Li Knight shifts are measured by solid‐state NMR spectroscopy that are consistent with a nearly complete state of lithium ionization. The noncubic local symmetry at the tin site is reflected by a nuclear electric quadrupolar splitting in the 119Sn Mössbauer spectra and a small chemical shift anisotropy evident from 119Sn solid‐state NMR spectroscopy. Variable‐temperature static 7Li solid‐state NMR spectra reveal motional narrowing effects at temperatures above 200 K, revealing lithium atomic mobility on the kHz time scale. Detailed lineshape as well as temperature‐dependent spin lattice relaxation time measurements indicate an activation energy of lithium motion of 27 kJ mol?1.  相似文献   

14.
Solid lithium electrolytes in the Li4-3x Fe x GeO4 system were synthesized. Their phase composition, thermal behavior, and electrical conductivity were studied in the temperature interval 300–750°C. Introduction of Fe3+ ions into lithium orthogermanate leads to the formation of a γ-Li3PO4-type structure and to a sharp increase in the conductivity, with a maximum reached at x = 0.075–0.15: about 10?1 S cm?1 at 300°C and more than 1 S cm?1 at 700°C. The main current carriers are interstitial Li+ cations weakly bound with the rigid framework. Owing to high conductivity, the electrolytes studied are of interest for use in high-temperature electrochemical devices.  相似文献   

15.
Sodium zirconium phosphate (NZP) composition Na1−x Li x Zr2(PO4)3, x = 0.00–0.75 has been synthesized by method of solid state reaction method from Na2CO3·H2O, Li2CO3, ZrO2, and NH4H2PO4, sintering at 1050–1250 °C for 8 h only in other to determine the effect on thermal properties, such as the phase formation of the compound. The materials have been characterized by TGA and DTA thermal analysis methods from room temperature to 1000 °C. It was observed that the increase in lithium content of the samples increased thermal stability of the samples and the DTA peaks shifted towards higher temperatures with increase in lithium content. The thermal stability regions for all the sample was observed to be from 640 °C. The sample with the highest lithium content, x = 0.75, exhibited the greatest thermal stability over the temperature range.  相似文献   

16.
The lithium-conducting solid electrolytes in the Li4 ? 2x Cd x GeO4 (0 ≤ x ≤ 0.6) system are synthesized. Their crystal structure and temperature and concentration dependences of conductivity are studied. The specimens with the highest conductivity have a γ-Li3PO4-derivative structure. The solid solutions with x = 0.15–0.25 are stable at the room temperature, whereas the specimens with x ≥ 0.3 decompose yielding Li2CdGeO4 below 310 ± 10°C. Li3.6Cd0.2GeO4 solid solution exhibits the highest conductivity (5.25 × 10?2 S cm?1 at 300°C). The factors, which affect the conductivity of synthesized solid electrolytes, are considered.  相似文献   

17.
Conductivity data for the lithium ion conducting solid electrolyte, LISICON, Li2+2xZn1?xGeO4 over a particularly wide composition range, 0.15 < x < 0.85, and over the temperature range ~25 to 150°C show that both the activation energy and preexponential factor pass through maxima around x ~ 0.4 to 0.5, at which the preexponential factor exhibits anomalously high values, ~1013 ohm?1 cm?1 K. An explanation is offered which involves the trapping of mobile Li+ ions by the immobile sublattice at lower temperatures. This model also accounts for ageing effects observed at lower temperatures in which the conductivity decreases slowly with time. In the isostructural Li+ electrolytes, Li3+xSixY1?xO4 (Y = P, As, V), the compositional dependence of both the preexponential factor and activation energy is less marked and no evidence for ion trapping effects is observed.  相似文献   

18.
The phase equilibria as well as the properties and crystal structures of the compounds formed in both Li2SO4-MgSO4 and Li2SO4-Li4SiO4 systems have been studied by means of x-ray diffraction technique (at high and room temperatures) as well as by the thermal analyses (DTA, DSC, TGA, etc.). In Li2SO4-MgSO4 system there exists a compound Mg4Li2(SO4)5 formed by peritectic reaction at 840°C and decomposed at 105°C into the Li2SO4-base solid solution and MgSO4 · Mg4Li2(SO4)5 and Li2SO4-base solid solution conduct an eutectic reaction at 663°C with the composition of eutectic point lying in 22 mol% MgSO4. The solubility of MgSO4 in Li2SO4 is a little smaller than 10 mol% while at the same time the Li2SO4 phase transition temperature decreases from 574 to 560°C On the other hand, no noticeable solid solubility of Li2SO4 in MgSO4 has been observed. The reaction is an endothermal one and its heat of formation is 2.57 kJ/mol. The activation energy of the reaction calculated by thermal peak displacement method at various heating rates is 173.5 kJ/mol (1.80 ev). The crystal Mg4Li2(SO4)5 belongs to orthorhombic system with lattice parameters at 180°C: a = 8.577, b=8.741, c= 11.918 Å. The space group seems to be either P222 or P mmm. Assuming that there are two formula units in a unit cell, the density calculated is then 2.20 g/cm3 very close to that of Li2SO4 or MgSO4. Meanwhile, in Li2SO4-Li4SiO4 system a new phase Li8-2x(SiO4)8-x(SO4)x is formed by peritectic reaction at 953°C with a range of composition x=0.96 ?0.58. The crystal belongs to ortho-rhombic system with lattice parameters at x=0.8: a = 5.002, b= 6.173 and c=10.608Å. The density observed is 2.31 g/cm3 and there are 2 formula units in an unit cell. It is shown from the measurements of piezoelectric and laser SHG coefficients of the crystal that the crystal posseses a symmetrical center with the space group belonging to P mmn. The lattice parameter c has a maximum at x=0.8. In the air Li8-2x(SiO4)2-x(SO4)x can absorb 7.6 wt% water vapour and other gases which can only be desorbed by heating it at a temperature above 350°C. Neither absorption nor desorbtion can change its crystal structure, a characteristic similar to that of zeolite molecular sieve. The dewater activation energy of Li8-2x(SiO4)2-x(SO4)x is 171.5 kJ/mol. Li8-2x(SiO4)2-x(SO4)x and Li4SO4 bring about an eutectic reaction at 823°C with its eutectic composition being 12 mol% Li4SiO4. No observable solubility of Li4SiO4 in Li3SO4 has been noticed. The solubility of Li2SO4 in Li4SiO4 is approximately equal to 5 mol%. With Li2SO4 being dissolved in, the phase transition temperature of Li4SiO4 is decreased. After being fused, the specimens Li3SO4-MgSO4 and Li2SO4-Li4SiO4 are cooled at a rate of 10°C/min, their metastable eutectic systems are resulted respectively.  相似文献   

19.
Dense ceramics (Li4+xSi1−xAlxO4 with 0 ≤ x ≤ 0.3) are obtained by sintering at 700–900°C, without prior calcination, of sol-gel powders prepared by an alkoxide-hydroxide route. In comparison with the pure lithium orthosilicate (3 × 10−4 S · cm−1 at 350°C), only a slight enhancement of the ionic conductivity is noted for monophase ceramics with Li4SiO4-type structure (5 × 10−4 S · cm−1 at 350°C for x = 0.3). Higher conductivity (2 × 10−2 S · cm−1 at 350°C) is observed for an heterogeneous material formed of a lithium silicoaluminate phase (x = 0.2) with the Li4SiO4-type structure coexisting with lithium hydroxide. In this two-phase material, ac conductivity and 7Li spin-lattice relaxation data are consistent with the formation of a new kinetic path, via a thin layer along the interface, which enhances the lithium mobility.  相似文献   

20.
The syntheses and single‐crystal and electronic structures of three new ternary lithium rare earth germanides, RE5−xLixGe4 (RE = Nd, Sm and Gd; x≃ 1), namely tetrasamarium lithium tetragermanide (Sm3.97Li1.03Ge4), tetraneodymium lithium tetragermanide (Nd3.97Li1.03Ge4) and tetragadolinium lithium tetragermanide (Gd3.96Li1.03Ge4), are reported. All three compounds crystallize in the orthorhombic space group Pnma and adopt the Gd5Si4 structure type (Pearson code oP36). There are six atoms in the asymmetric unit: Li1 in Wyckoff site 4c, RE1 in 8d, RE2 in 8d, Ge1 in 8d, Ge2 in 4c and Ge3 in 4c. One of the RE sites, i.e. RE2, is statistically occupied by RE and Li atoms, accounting for the small deviation from ideal RE4LiGe4 stoichiometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号