首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the orbital‐dependence of three (parameter‐free) double‐hybrid density functionals, namely the PBE0‐DH, the PBE‐QIDH models, and the SOS1‐PBE‐QIDH spin‐opposite‐scaled variant of the latter. To do it, we feed all their energy terms with different sets of orbitals obtained previously from self‐consistent density functional theory calculations using several exchange‐correlation functionals (e.g., PBE, PBE0, PBEH&H), or directly with HF‐PBE orbitals, to see their effect on selected datasets for atomization and reaction energies, the latter proned to marked self‐interaction errors. We find that the PBE‐QIDH double‐hybrid model shows a great consistency, as the best results are always obtained for the set of orbitals corresponding to its hybrid scheme, which prompts us to recommend this model without any other fitting or reparameterization. © 2017 Wiley Periodicals, Inc.  相似文献   

2.
Time-dependent density functional theory (TDDFT) is employed to investigate exchange-correlation-functional dependence of the vertical core-excitation energies of several molecules including H, C, N, O, and F atoms. For the local density approximation (LDA), generalized gradient approximation (GGA), and meta-GGA, the calculated X1s-->pi* excitation energies (X = C, N, O, and F) are severely underestimated by more than 13 eV. On the other hand, time-dependent Hartree-Fock (TDHF) overestimates the excitation energies by more than 6 eV. The hybrid functionals perform better than pure TDDFT because HF exchange remedies the underestimation of pure TDDFT. Among these hybrid functionals, the Becke-Half-and-Half-Lee-Yang-Parr (BHHLYP) functional including 50% HF exchange provides the smallest error for core excitations. We have also discovered the systematic trend that the deviations of TDHF and TDDFT with the LDA, GGA, and meta-GGA functionals show a strong atom-dependence. Namely, their deviations become larger for heavier atoms, while the hybrid functionals are significantly less atom-dependent.  相似文献   

3.
The present work introduces an efficient screening technique to take advantage of the fast spatial decay of the short range Hartree-Fock (HF) exchange used in the Heyd-Scuseria-Ernzerhof (HSE) screened Coulomb hybrid density functional. The screened HF exchange decay properties and screening efficiency are compared with traditional hybrid functional calculations on solids. The HSE functional is then assessed using 21 metallic, semiconducting, and insulating solids. The examined properties include lattice constants, bulk moduli, and band gaps. The results obtained with HSE exhibit significantly smaller errors than pure density functional theory (DFT) calculations. For structural properties, the errors produced by HSE are up to 50% smaller than the errors of the local density approximation, PBE, and TPSS functionals used for comparison. When predicting band gaps of semiconductors, we found smaller errors with HSE, resulting in a mean absolute error of 0.2 eV (1.3 eV error for all pure DFT functionals). In addition, we present timing results which show the computational time requirements of HSE to be only a factor of 2-4 higher than pure DFT functionals. These results make HSE an attractive choice for calculations of all types of solids.  相似文献   

4.
香豆素衍生物的荧光发射能计算及XC泛函的合理选择   总被引:2,自引:0,他引:2  
王溢磊  吴国是 《物理化学学报》2007,23(12):1831-1838
采用含时密度泛函理论(TDDFT)与单激发组态相互作用(CIS)处理相结合的计算方案对香豆素系列15种已知荧光化合物的发射能进行了系统考察. 结果表明, 发射能与吸收能一样, 其计算值主要取决于交换-相关(XC)泛函的选择. 只要泛函选用得当, 在使用较小基组的TDDFT/6-31G(d)//CIS/3-21G(d)理论水平上即可使绝大部分化合物的实验发射能在精度达0.16 eV以内得以重现. 与吸收能计算不同的是, 无法选用单一的一种泛函来对全系列化合物的发射能作出满意的理论预测. 激发态无明显电荷转移的、7位上有氨(或胺)基取代或有氮原子相连的化合物, 其适用泛函为不含Hartree-Fock(HF)交换能的纯泛函OLYP和BLYP. 而激发态发生较大程度电荷转移的、3 位上有共轭取代基的衍生物, 其适用泛函则为含20%的HF交换成分的混合泛函B3LYP. 因此, 发射能计算中的XC泛函选择, 应同时考虑取代基团效应以及激发态的电子结构特征. 其中, 发射能计算值受XC泛函中HF交换能比例的影响十分敏感. 文中还对激发能计算中的溶剂效应校正方案和激发态几何优化精度的影响进行了讨论.  相似文献   

5.
Yilei Wang  Guoshi Wu   《Acta Physico》2007,23(12):1831-1838
A scheme of time-dependent density functional theory (TDDFT) combined with single-excitation configuration interaction (CIS) approach was employed to make a detailed investigation of the emitting energy for fifteen well-known coumarin derivatives. The results showed that the predicted emitting energies as well as the absorption ones were dominated mainly by the exchange-correlation (XC) functional to be used. So long as a functional is properly chosen, the experimental emitting energy of most derivatives can be accurately reproduced within 0.16 eV by a calculation at the TDDFT/6-31G(d)//CIS/3-21G(d) theoretical level. It was found that, nevertheless, the hybrid functional, B3LYP, well predicted the absorption energies for all the fifteen coumarin derivatives but none of the functionals could work equally well for the emitting energy calculations. Two pure functionals, OLYP and BLYP, yield good emitting energies for the 7-aminocoumarins or derivatives with a N atom connected to 7-position, which exhibit inconspicuous charge transfer (CT) in their excited states, whereas the B3LYP hybrid functional, with 20% Hartree-Fock (HF) exchange energy, performs significantly better than OLYP and BLYP for those 3-substituted coumarins with larger CT in excited states. Thus, in comparison with the absorption energies, the selection of proper functionals for the emitting energy calculations becomes more complex. In all probability, it is effective and doable to choose an XC-functional with alterable fraction of HF exchange energy according to the composition and structure characteristics of molecule.  相似文献   

6.
The Heyd-Scuseria-Ernzerhof (HSE) density functionals are popular for their ability to improve upon the accuracy of standard semilocal functionals such as Perdew-Burke-Ernzerhof (PBE), particularly for semiconductor band gaps. They also have a reduced computational cost compared to hybrid functionals, which results from the restriction of Fock exchange calculations to small inter-electron separations. These functionals are defined by an overall fraction of Fock exchange and a length scale for exchange screening. We systematically examine this two-parameter space to assess the performance of hybrid screened exchange (sX) functionals and to determine a balance between improving accuracy and reducing the screening length, which can further reduce computational costs. Three parameter choices emerge as useful: "sX-PBE" is an approximation to the sX-LDA screened exchange density functionals based on the local density approximation (LDA); "HSE12" minimizes the overall error over all tests performed; and "HSE12s" is a range-minimized functional that matches the overall accuracy of the existing HSE06 parameterization but reduces the Fock exchange length scale by half. Analysis of the error trends over parameter space produces useful guidance for future improvement of density functionals.  相似文献   

7.
8.
9.
10.
The paper presents a method comparison for the prediction of zero-field splitting (ZFS) parameters in a series of Mn (II) coordination complexes. The test set consists of Mn (II) complexes that are experimentally well-characterized by X-ray diffraction and high-field electron paramagnetic resonance. Their ZFS parameters have been calculated using density functional theory (DFT) as well as complete active space self-consistent field (CASSCF) methods. It is shown that the recently introduced coupled-perturbed spin-orbit coupling (CP-SOC) approach [ Neese, F. J. Chem. Phys. 2007, 127, 164112 ] together with hybrid-DFT functionals leads to a slope of the correlation line (plot of experimental vs calculated D values) that is essentially unity provided that the direct spin-spin interaction is properly included in the treatment. This is different from our previous DFT study on the same series of complexes where a severe overestimation of the D parameter has been found [ Zein, S. ; Duboc, C. ; Lubitz, W. ; Neese, F. Inorg. Chem. 2008, 47, 134 ]. CASSCF methods have been used to evaluate the ZFS in an "ab initio ligand-field" type treatment. The study demonstrates that a substantial part of the relevant physics is lost in such a treatment since only excitations within the manganese d-manifold are accounted for. Thus, a severe underestimation of the D parameter has been found. Because the CASSCF calculations in combination with quasidegenerate perturbation theory treats the SOC to all orders, we have nevertheless verified that second-order perturbation theory is an adequate approximation in the case of the high-spin d (5) configuration.  相似文献   

11.
The geometry of the nitrate radical, NO3*, for which unrestricted Hartree-Fock (HF) breaks spatial symmetry of the wave function, was optimized using hybrid density functionals that include varying fractions of Hartree-Fock exchange. Although symmetry breaking was not observed even when the functional with the highest HF exchange (BHandHLYP) was used, only B3LYP correctly describes the D(3h) symmetry of NO3* as ground-state structure with the lowest energy. Further, geometries and energies of the stationary points in the addition of NO3* to ethyne, propyne, and 2-butyne were calculated using ab initio and density functional methods. The reactions proceed through Z-configurated transition states leading to Z-configurated vinyl radicals with the activation barrier decreasing with increasing methyl substitution at the C[triple bond]C by ca. 11 kJ mol(-1) per methyl group. It was found that the results obtained at the BHandHLYP/cc-pVDZ level of theory are in good agreement with the data from single-point QCISD and CCSD(T) calculations.  相似文献   

12.
The structure, dynamical, and electronic properties of liquid water utilizing different hybrid density functionals were tested within the plane wave framework of first-principles molecular dynamics simulations. The computational approach, which employs modified functionals with short-ranged Hartree-Fock exchange, was first tested in calculations of the structural and bonding properties of the water dimer and cyclic water trimer. Liquid water simulations were performed at the state point of 350 K at the experimental density. Simulations included three different hybrid functionals, a meta-functional, four gradient-corrected functionals, and the local density and Hartree-Fock approximations. It is found that hybrid functionals are superior in reproducing the experimental structure and dynamical properties as measured by the radial distribution function and self-diffusion constant when compared to the pure density functionals. The local density and Hartree-Fock approximations show strongly over- and understructured liquids, respectively. Hydrogen bond analysis shows that the hybrid functionals give slightly smaller average numbers of hydrogen bonds than pure density functionals but similar hydrogen bond populations. The average molecular dipole moments in the liquid from the three hybrid functionals are lower than those of the corresponding pure density functionals.  相似文献   

13.
We report how closely the Kohn-Sham highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) eigenvalues of 11 density functional theory (DFT) functionals, respectively, correspond to the negative ionization potentials (-IPs) and electron affinities (EAs) of a test set of molecules. We also report how accurately the HOMO-LUMO gaps of these methods predict the lowest excitation energies using both time-independent and time-dependent DFT (TD-DFT). The 11 DFT functionals include the local spin density approximation (LSDA), five generalized gradient approximation (GGA) functionals, three hybrid GGA functionals, one hybrid functional, and one hybrid meta GGA functional. We find that the HOMO eigenvalues predicted by KMLYP, BH&HLYP, B3LYP, PW91, PBE, and BLYP predict the -IPs with average absolute errors of 0.73, 1.48, 3.10, 4.27, 4.33, and 4.41 eV, respectively. The LUMOs of all functionals fail to accurately predict the EAs. Although the GGA functionals inaccurately predict both the HOMO and LUMO eigenvalues, they predict the HOMO-LUMO gap relatively accurately (approximately 0.73 eV). On the other hand, the LUMO eigenvalues of the hybrid functionals fail to predict the EA to the extent that they include HF exchange, although increasing HF exchange improves the correspondence between the HOMO eigenvalue and -IP so that the HOMO-LUMO gaps are inaccurately predicted by hybrid DFT functionals. We find that TD-DFT with all functionals accurately predicts the HOMO-LUMO gaps. A linear correlation between the calculated HOMO eigenvalue and the experimental -IP and calculated HOMO-LUMO gap and experimental lowest excitation energy enables us to derive a simple correction formula.  相似文献   

14.
Eleven possible conformers of glycylglycine have been studied by using the BLYP, B3LYP methods of density functional theory and the HF method at the basis set of 6-311++G**. BLYP (using Becke's and Lee-Yang-Parr's correlation functionals), ab initio Hartree-Fock (HF) and hybrid DFT/HF B3LYP calculations have been carried out to study the structure and vibrational spectra of glycylglycine. Glycylglycine crystal structure has been determined by X-ray diffraction analysis. The title compound has been crystallizes in the orthorhombic space group C1, with Z=4. And the unit cell parameters are: a=8.1184(12)A, b=9.5542(14)A, c=7.8192(11)A and V=577.95(15)A(3). Molecular conformation calculations have got 11 possible conformers. In these possible conformers, the most stable one has been selected. The BLYP/6-311++G** and scaled HF/6-311++G** frequencies correspond well with available experimental assignments of the normal vibrational modes. Comparison of the observed fundamental vibrational frequencies of glycylglycine and calculated results by density functional B3LYP and Hartree-Fock (HF) methods indicates that B3LYP is superior to the scaled Hartree-Fock (HF) for molecular vibrational issues.  相似文献   

15.
The ground state coordination isomers for 30 different trigonal bipyramidal transition metal complexes have been predicted using different levels of quantum mechanics: semiempirical (PM3(tm)), ab initio (MP2//HF), pure (BPW91) and hybrid (B3PW91) density functional theory (DFT) methods. For species where these methods failed to reproduce crystallographic data, hybrid quantum mechanics/molecular mechanics (QM/MM) methods were used to study more exact experimental models. Literature deficiencies regarding ground state multiplicity of these species were supplemented by spin predictions using previously tested PM3(tm) methods. Geometry optimization calculations were performed for each possible coordination isomer. The predicted ground state minima provided by the different methods are compared to each other and with crystallographic data. Pure DFT functionals outperformed hybrid functionals and MP2//HF. The very rapid PM3(tm) parameterization method provided accurate predictions in comparison to other levels of theory. An integrated MM/PM3(tm)/DFT de novo scheme accurately reproduced crystallographic data for species where the individual methods failed.  相似文献   

16.
Fluoranthene and benzo[k]fluoranthene-based oligoarenes are good candidates for organic light-emitting diodes (OLEDs). In this work, the electronic structure and optical properties of fluoranthene, benzo[k]fluoranthene, and their derivatives have been studied using quantum chemical methods. The ground-state structures were optimized using the density functional theory (DFT) methods. The lowest singlet excited state was optimized using time-dependent density functional theory (TD-B3LYP) and configuration interaction singles (CIS) methods. On the basis of ground- and excited-state geometries, the absorption and emission spectra have been calculated using the TD-DFT method with a variety of exchange-correlation functionals. All the calculations were carried out in chloroform medium. The results show that the absorption and emission spectra calculated using the B3LYP functional is in good agreement with the available experimental results. Unlikely, the meta hybrid functionals such as M06HF and M062X underestimate the absorption and emission spectra of all the studied molecules. The calculated absorption and emission wavelength are more or less basis set independent. It has been observed that the substitution of an aromatic ring significantly alters the absorption and emission spectra.  相似文献   

17.
The performance and relationship among different range-separated (RS) hybrid functional schemes are examined using the Coulomb-attenuating method (CAM) with different values for the fractions of exact Hartree-Fock (HF) exchange (α), long-range HF (β), and a range-separation parameter (μ), where the cases of α + β = 1 and α + β = 0 were designated as CA and CA0, respectively. Attenuated PBE exchange-correlation functionals with α = 0.20 and μ = 0.20 (CA-PBE) and α = 0.25 and μ = 0.11 (CA0-PBE) are closely related to the LRC-ωPBEh and HSE functionals, respectively. Time-dependent density functional theory calculations were carried out for a number of classes of molecules with varying degrees of charge-transfer (CT) character to provide an assessment of the accuracy of excitation energies from the CA functionals and a number of other functionals with different exchange hole models. Functionals that provided reasonable estimates for local and short-range CT transitions were found to give large errors for long-range CT excitations. In contrast, functionals that afforded accurate long-range CT excitation energies significantly overestimated energies for short-range CT and local transitions. The effects of exchange hole models and parameters developed for RS functionals for CT excitations were analyzed in detail. The comparative analysis across compound classes provides a useful benchmark for CT excitations.  相似文献   

18.
This paper presents a revised and improved version of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. The performance of this functional is assessed on a variety of molecules for the prediction of enthalpies of formation, geometries, and vibrational frequencies, yielding results as good as or better than the successful PBE0 hybrid functional. Results for ionization potentials and electron affinities are of slightly lower quality but are still acceptable. The comprehensive test results presented here validate our assumption that the screened, short-range Hartree-Fock (HF) exchange exhibits all physically relevant properties of the full HF exchange. Thus, hybrids can be constructed which neglect the computationally demanding long-range part of HF exchange while still retaining the superior accuracy of hybrid functionals, compared to pure density functionals.  相似文献   

19.
The divide-and-conquer (DC) method, which is one of the linear-scaling methods avoiding explicit diagonalization of the Fock matrix, has been applied mainly to pure density functional theory (DFT) or semiempirical molecular orbital calculations so far. The present study applies the DC method to such calculations including the Hartree-Fock (HF) exchange terms as the HF and hybrid HF/DFT. Reliability of the DC-HF and DC-hybrid HF/DFT is found to be strongly dependent on the cut-off radius, which defines the localization region in the DC formalism. This dependence on the cut-off radius is assessed from various points of view: that is, total energy, energy components, local energies, and density of states. Additionally, to accelerate the self-consistent field convergence in DC calculations, a new convergence technique is proposed.  相似文献   

20.
In an attempt to get more insight into the links between the coverage of dynamic electron correlation effects defined in traditional wave function theories (WFT) by density functional theories (DFT) we have performed comprehensive studies for the Ar atom, for which the dynamic correlation effects play the dominant role. A density-based approach directly hinged on difference radial density (DRD) distributions defined with respect the Hartree-Fock radial density has been employed for analyzing the impact of dynamic correlation effects on the density. The DRD-distributions calculated by ab initio methods have been compared with their DFT counterparts generated for representatives of several generations of broadly used exchange-correlation functionals and for the recently developed orbital-dependent OEP2 exchange-correlation functional (Bartlett et al. in J Chem Phys 122:034104, 2005). For the local, generalized-gradient, and hybrid functionals it has been found that the dynamic WFT correlation effects on the density are to a significant extent accounted for by densities resulting from exchange-only calculations. It has been shown that the removal of self-interaction errors does not change this result. It has been demonstrated that the VWN5 and LYP correlation functionals do not represent any substantial dynamical correlation effects on the electron density, whereas these effects are well represented by the orbital-dependent OEP2 correlation functional. Critical comparison of the results of the present investigations with various published results obtained for more complex many-electron systems has been made. Attention has been paid to bringing into sharper relief the differences between the conclusions reached when using energy- or density-based criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号