首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotubes with uniform density were synthesized on carbon fiber substrate by the floating catalyst method. The morphology and microstructure were characterized by scanning electron microscopy and Raman spectroscopy. The results of field emission showed that the emission current density of carbon nanotubes/carbon fibers was 10 μA/cm2 and 1 mA/cm2 at the field of 1.25 and 2.25 V/μm, respectively, and the emission current density could be 10 and 81.2 mA/cm2 with the field of 4.5 and 7 V/μm, respectively. Using uniform and sparse density distribution of carbon nanotubes on carbon fiber substrate, the tip predominance of carbon nanotubes can be exerted, and simultaneously the effect of screening between adjacent carbon nanotubes on field emission performance can also be effectively decreased. Therefore, the carbon nanotubes/carbon fibers composite should be a good candidate for a cold cathode material.  相似文献   

2.
Vertically aligned carbon nanotubes have been synthesized from botanical hydrocarbons: Turpentine oil and Eucalyptus oil on Si(100) substrate using Fe catalyst by simple spray pyrolysis method at 700°C and at atmospheric pressure. The as-grown carbon nanotubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and Raman spectroscopy. It was observed that nanotubes grown from turpentine oil have better degree of graphitization and field emission performance than eucalyptus oil grown carbon nanotubes. The turpentine oil and eucalyptus oil grown carbon nanotubes indicated that the turn-on field of about 1.7 and 1.93 V/μm, respectively, at 10 μA/cm2. The threshold field was observed to be about 2.13 and 2.9 V/μm at 1 mA/cm2 of nanotubes grown from turpentine oil and eucalyptus oil respectively. Moreover, turpentine oil grown carbon nanotubes show higher current density in relative to eucalyptus oil grown carbon nanotubes. The maximum current density of 15.3 mA/cm2 was obtained for ∼3 V/μm corresponding to the nanotubes grown from turpentine oil. The improved field emission performance was attributed to the enhanced crystallinity, fewer defects, and greater length of turpentine oil grown carbon nanotubes.  相似文献   

3.
Transport and field-emission properties of as-synthesized CNx and BNCx (x<0.1) multi-walled nanotubes were compared in detail. Individual ropes made of these nanotubes and macrofilms of those were tested. Before measurements, the nanotubes were thoroughly characterized using high-resolution and energy-filtered electron microscopy, electron diffraction and electron-energy-loss spectroscopy. Individual ropes composed of dozens of CNx nanotubes displayed well-defined metallic behavior and low resistivities of ∼10–100 kΩ or less at room temperature, whereas those made of BNCx nanotubes exhibited semiconducting properties and high resistivities of ∼50–300 MΩ. Both types of ropes revealed good field-emission properties with emitting currents per rope reaching ∼4 μA(CNx) and ∼2 μA (BNCx), albeit the latter ropes se- verely deteriorated during the field emission. Macrofilms made of randomly oriented CNx or BNCx nanotubes displayed low and similar turn-on fields of ∼2–3 V/μm. 3 mA/cm2 (BNCx) and 5.5 mA/cm2 (CNx) current densities were reached at 5.5 V/μm macroscopic fields. At a current density of 0.2–0.4 mA/cm2 both types of compound nanotubes exhibited equally good emission stability over tens of minutes; by contrast, on increasing the current density to 0.2–0.4 A/cm2, only CNx films continued to emit steadily, while the field emission from BNCx nanotube films was prone to fast degradation within several tens of seconds, likely due to arcing and/or resistive heating. Received: 29 October 2002 / Accepted: 1 November 2002 / Published online: 10 March 2003 RID="*" ID="*"Corresponding author. Fax: +81-298/51-6280, E-mail: golberg.dmitri@nims.go.jp  相似文献   

4.
The field emission characteristics of a single micro-bundle of single-walled carbon nanotubes (SWCNTs) were investigated using field emission microscopy (FEM). Fowler–Nordheim plots revealed that the work function of the SWCNTs was reduced with increasing heating temperature, and reached a minimum value around 1000 °C, assuming that the β factor was constant during the heating process. Field emission patterns also demonstrated fine structures that were believed to be images of the cap of a SWCNT, which was in a clean state. The radius of the SWCNT micro-bundle was measured by transmission electron microscopy (TEM), and the β factor was calculated using two empirical formulae. Then, the work function of the SWCNT was determined from the slope, K, of its Fowler–Nordheim plot. The work function values were Φ1=4.76 eV and Φ2=4.88 eV, respectively. Received: 26 October 2001 / Revised version: 19 February 2002 / Published online: 6 June 2002  相似文献   

5.
Single-wall carbon nanotubes (SWNTs) were synthesized by the irradiation of 20-ms CO2 laser pulses onto a graphite–Co/Ni target at room temperature. We investigated the effect of laser power density (10–150 kW/cm2) and ambient Ar gas pressure (150–760 Torr) on the abundance of SWNTs with lengths of up to about 200 nm in soot-like carbonaceous deposits. For a constant power density (30 kW/cm2), depending on the Ar gas pressure, SWNTs with diameters of 1.2–1.4 nm were synthesized. Expansion behavior and temperature-fall rates of clusters and/or particles in laser plumes were also analyzed by high-speed video imaging and temporally and spatially resolved emission spectroscopy. The temperature-fall rates were estimated to be 171–427 K/ms. The SWNT growth on the time scale of a few milliseconds appeared to be related to some features of condensing clusters and/or particles, including resident densities, collision frequencies and temperatures. Received: 16 July 2001 / Accepted: 23 July 2001 / Published online: 30 August 2001  相似文献   

6.
The thermal properties of carbon nanotubes are directly related to their unique structure and small size. Because of these properties, nanotubes may prove to be an ideal material for the study of low-dimensional phonon physics, and for thermal management, both on the macro- and the micro-scale. We have begun to explore the thermal properties of nanotubes by measuring the specific heat and thermal conductivity of bulk SWNT samples. In addition, we have synthesized nanotube-based composite materials and measured their thermal conductivity. The measured specific heat of single-walled nanotubes differs from that of both 2D graphene and 3D graphite, especially at low temperatures, where 1D quantization of the phonon bandstructure is observed. The measured specific heat shows only weak effects of intertube coupling in nanotube bundling, suggesting that this coupling is weaker than expected. The thermal conductivity of nanotubes is large, even in bulk samples: aligned bundles of SWNTs show a thermal conductivity of >200 W/m K at room temperature. A linear K(T) up to approximately 40 K may be due to 1D quantization; measurement of K(T) of samples with different average nanotube diameters supports this interpretation. Nanotube–epoxy blends show significantly enhanced thermal conductivity, showing that nanotube-based composites may be useful not only for their potentially high strength, but also for their potentially high thermal conductivity. Received: 17 October 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

7.
The field emission properties of multi-walled carbon nanotubes were examined using a screen-printed thick film with a diode-type configuration in a vacuum. The effects of various concentrations of two different ceramic fillers, indium tin oxide (ITO) powder and a glass frit, on the emission current density and turn-on field were evaluated. The emission properties of both pastes were dependent on the amount of filler. Considerably enhanced emission properties were obtained with the paste containing 5–10 wt.% of either ITO or the glass frit compared with those without a filler. The paste containing the ceramic filler showed enhanced emission properties compared with that containing the 5 wt.% Ag conventionally used, which confirmed the importance of the filler. The paste containing 10 wt.% ITO represented an emission current density of 176.4 μA/cm2 at 5 V/μA, a turn-on field of 1.87 V/μA for an emission current density of 1 μA/cm2 and a field enhancement factor of 7580. The paste formulation was also found to be suitable for fine patterning using UV-lithography techniques. A long-term stability test for 110 h of a paste containing 10 wt.% ITO revealed a half-life of approximately 30000 h, which is appropriate for commercial applications.  相似文献   

8.
A new preparation process for carbon nanotubes (CNTs) cold cathode was studied through the replacement of traditional organic or inorganic binder with Ag nano-particles. This method has the advantages of low preparation temperature and fine electrical contact between CNTs paste and substrate. A mixture paste of CNTs, Ag nano-particles and other organic solvents was spreaded on Si substrate. By melting and connecting of Ag nano-particles after sintered 30 min at 250 °C, a flat CNTs films with good field emission properties was obtained. The measurements reveal that the turn on electric field and the threshold electric field of as-prepared CNTs cathode are 2.1 and 3.9 V/μm respectively and the field emission current density is up to 41 mA/cm2 at an applied electric field of 4.7 V/μm.  相似文献   

9.
Self-assembly pyrolytic routes to large arrays (<2.5 cm2) of aligned CNx nanotubes (15–80 nm OD and <100 μm in length) are presented. The method involves the thermolysis of ferrocene/melamine mixtures (5:95) at 900–1000 °C in the presence of Ar. Electron energy loss spectroscopy (EELS) reveals that the N content varies from 2–10%, and can be bonded to C in two different fashions (double-bonded and triple-bonded nitrogen). The electronic densities of states (DOS) of these CNx nanotubes, using scanning tunneling spectroscopy (STS), are presented. The doped nanotubes exhibit strong features in the conduction band close to the Fermi level (0.18 eV). Using tight-binding and ab initio calculations, we confirm that pyridine-like (double-bonded) N is responsible for introducing donor states close to the Fermi Level. These electron-rich structures are the first example of n-type nanotubes. Finally, it will be shown that moderate electron irradiation at 700–800 °C is capable of coalescing single-walled nanotubes (SWNTs). The process has also been studied using tight-binding molecular dynamics (TBMD). Vacancies induce the coalescence via a zipper-like mechanism, which has also been observed experimentally. These vacancies trigger the organization of atoms on the tube lattices within adjacent tubes. These results pave the way to the fabrication of nanotube heterojunctions, robust composites, contacts, nanocircuits and strong 3D composites using N-doped tubes as well as SWNTs. Received: 10 October 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

10.
In order to improve the field emission properties of the graphite flakes, the carbon nanotubes (CNTs) are produced on above without the metallic catalyst using mixtures of C2H2 and H2 gases by thermal chemical vapor deposition. We spin the graphite solution on the silicon wafer and dry it, then synthesize the CNTs on the graphite flakes. We change the synthetic time to obtain the optimal conditions for enhancement of field emission properties of graphite flakes. The experimental results show that the density and quality of the CNTs could be controlled significantly by the synthetic time. Besides, the field emission properties of the treated graphite flakes are also affected greatly by it. The emission current density of the treated graphite flakes reaches to 0.5 mA/cm2 at 3 V/μm, and the turn-on field is decreased from 7.7 to 1.9 V/μm after producing the CNTs on above.  相似文献   

11.
We report on the extensive characterization of carbon nanotube electron field emitters. We studied the emission behavior of single-wall, closed and opened arc-discharge multi-wall, and catalytically grown multi-wall nanotubes, as single emitters and in film form. The nanotube field emitters show excellent field emission properties, but significant differences were observed between the different types of nanotubes. To obtain good performances as well as long emitter lifetimes, the nanotubes should be multi-walled and have closed, well-ordered tips. Complementary results such as energy distribution and luminescence induced by the field emission give further precious indications on the field emission mechanism. The large field amplification factor, arising from the small radius of curvature of the nanotube tips, is partly responsible for the good emission characteristics. Additional evidence however shows that the density of states at the tip is non-metallic, appearing in the form of localized states with well-defined energy levels. Received: 15 May 1999 / Accepted: 18 May 1999 / Published online: 29 July 1999  相似文献   

12.
Uniform cathode deposits (longer than 15 mm), containing multiwalled carbon nanotubes (MWNTs) inside, were produced by dc arc discharge evaporation with a computer-controlled feeder of a pure-carbon electrode without a metal catalyst in a He–H2 gas mixture. The purification of MWNTs was carried out to remove amorphous carbon and carbon nanoparticles. High-resolution transmission electron microscopy observations and Raman scattering studies show that the MWNTs possess a high crystallinity and a mean outermost diameter of ∼ ∼10 nm. It has been confirmed that the current density in the electron field emission from a purified MWNT mat can reach 77.92 mA/cm2, indicating that the purified MWNTs are a promising candidate electron source in a super high-luminance light-source tube or a miniature X-ray source.  相似文献   

13.
Field emission from single-walled carbon nanotubes (SWNTs) aligned on a patterned gold surface is reported. The SWNT emitters were prepared at room temperature by a self-assembly monolayer technique. SWNTs were cut into sub-micron lengths by sonication in an acidic solution. Cut SWNTs were attached to the gold surface by the reaction between the thiol groups and the gold surface. The field-emission measurements showed that the turn-on field was 4.8 V/μm at an emission current density of 10 μA/cm2. The current density was 0.5 mA/cm2 at 6.6 V/μm. This approach provides a novel route for fabricating CNT-based field-emission displays. Received: 3 May 2002 / Accepted: 6 May 2002 / Published online: 4 December 2002 RID="*" ID="*"Corresponding author. Fax: +82-54/279-8298, E-mail: ce20047@postech.ac.kr  相似文献   

14.
A new method of a carbon nanotube purity estimation has been developed on the basis of Raman spectroscopy. The spectra of carbon soot containing different amounts of nanotubes were registered under heating from a probing laser beam with a step-by-step increased power density. The material temperature in the laser spot was estimated from a position of the tangential Raman mode demonstrating a linear thermal shift (-0.012 cm-1/K) from the position 1592 cm-1 (at room temperature). The rate of the material temperature rise versus the laser power density (determining the slope of a corresponding graph) appeared to correlate strongly with the nanotube content in the soot. The influence of the experimental conditions on the slope value has been excluded via a simultaneous measurement of a reference sample with a high nanotube content (95 vol. %). After the calibration (done by a comparison of the Raman and the transmission electron microscopy data for the nanotube percentage in the same samples) the Raman-based method is able to provide a quantitative purity estimation for any nanotube-containing material. Received: 11 December 2001 / Accepted: 12 December 2001 / Published online: 4 March 2002  相似文献   

15.
A comprehensive comparative study of electron field emission properties of carbon nanotube (CNT) films prepared by vacuum filtration and screen-printing was carried out. Field emission performance of vacuum filtered CNT films with different filtered CNT suspension volumes was systematically studied, and the optimum electron emission was obtained with a low turn on field of ∼0.93 V/μm (at 1 μA/cm2) and a high field enhancement factor β of ∼9720. Comparing with screen-printed CNT films, vacuum filtered CNT films showed better electron emission performance, longer lifetime, and greater adhesive strength to substrates. This work reveals a potential use of vacuum filtered CNT films as field emission cathodes.  相似文献   

16.
Field-electron emission from polyimide-ablated films   总被引:1,自引:0,他引:1  
Polyimide-ablated film was deposited by using pulsed laser ablation of a polyimide target, and field-electron emission from the film was observed for the first time. The turn-on field of the polyimide-ablated film is 12 V/μm. The current density is 0.725 mA/cm2, and the emission sites density is on the order of 106/cm2 at the applied field of 24 V/μm. The field-electron emission measurements indicate that this kind of film could be a new cold cathode material. It is suggested that the graphite-like clusters contained in the film play an important role in the field-electron emission. Received: 2 February 2000 / Accepted: 13 March 2000 / Published online: 9 August 2000  相似文献   

17.
The present work describes the field emission characteristics of nanoscale magnetic nanomaterial encapsulated multi-walled carbon nanotubes (MWNTs) fabricated over flexible graphitized carbon cloth. Ni/MWNTs, NiFe/MWNTs and NiFeCo/MWNTs have been synthesized by catalytic chemical vapor decomposition of methane over Mischmetal (Mm)-based AB3 (MmNi3, MmFe1.5Ni1.5 and MmFeCoNi) alloy hydride catalysts. Metal-encapsulated MWNTs exhibited superior field emission performance than pure MWNT-based field emitters over the same substrate. The results indicate that a Ni-filled MWNT field emitter is a promising material for practical field emission application with a lowest turn-on field of 0.6 V/μm and a high emission current density of 0.3 mA/cm2 at 0.9 V/μm.  相似文献   

18.
Zinc oxide nanopencil arrays were synthesized on pyramidal Si(1 0 0) substrates via a simple thermal evaporation method. Their field emission properties have been investigated: the turn-on electric field (at the current density of 10 μA/cm2) was about 3.8 V/μm, and the threshold electric field (at the current density of 1 mA/cm2) was 5.8 V/μm. Compared with similar structures grown on flat Si substrates, which were made as references, the pyramidal Si-based ZnO nanopencil arrays appeared to be superior in field emission performance, thus the importance of the non-flat substrates has been accentuated. The pyramidal Si substrates could not only suppress the field screening effect but also improve the field enhancement effect during the field emission process. These findings indicated that using non-flat substrates is an efficient strategy to improve the field emission properties.  相似文献   

19.
Mechanisms proposed in the literature are compared with a current scenario for the formation of single-wall carbon nanotubes in the laser-ablation process that is based on our spectral emission and laser-induced fluorescence measurements. It is suggested that the carbon which serves as feedstock for nanotube formation not only comes from the direct ablation of the target, but also from carbon particles suspended in the reaction zone. Fullerenes formed in the reaction zone may be photo-dissociated into C2 and other low molecular weight species, and also may serve as feedstock for nanotube growth. Confinement of the nanotubes in the reaction zone within the laser beam allows the nanotubes to be ‘purified’ and annealed during the formation process by laser heating. Received: 2 November 2000 / Accepted: 3 November 2000 / Published online: 23 March 2001  相似文献   

20.
Effect of temperature and aspect ratio on the field emission properties of vertically aligned carbon nanofiber and multiwalled carbon nanotube thin films were studied in detail. Carbon nanofibers and multiwalled carbon nanotube have been synthesized on Si substrates via direct current plasma enhanced chemical vapor deposition technique. Surface morphologies of the films have been studied by a scanning electron microscope, transmission electron microscope and an atomic force microscope. It is found that the threshold field and the emission current density are dependent on the ambient temperature as well as on the aspect ratio of the carbon nanostructure. The threshold field for carbon nanofibers was found to decrease from 5.1 to 2.6 V/μm when the temperature was raised from 300 to 650 K, whereas for MWCNTs it was found to decrease from 4.0 to 1.4 V/μm. This dependence was due to the change in work function of the nanofibers and nanotubes with temperature. The field enhancement factor, current density and the dependence of the effective work function with temperature and with aspect ratio were calculated and we have tried to explain the emission mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号