首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract-Phytochrome regulates the unrolling of primary leaf sections from 8-day-old dark-grown wheat ( Triticum aeslivum L. cv. Arminda) seedlings. Red light (R)-stimulated unrolling of leaf sections pretreated in 1 m M ethylene-bis-(β-aminoethylether)- N,N,N',N' -tetraacetic acid (EGTA) if 1 m M CaCl2 was added during a 30 min treatment period including and following irradiation. Nifedipine at 1 μ M (a Ca2+-channel antagonist) applied 10 min before R prevented the R stimulation of leaf unrolling. The Ca2+-channel agonist Bay K-8644 (1 μ M ) and acetylcholine (ACh, 1 mY M ) stimulated unrolling of leaf sections prewashed in EGTA in darkness, if 1 m M CaCl2 was present in the medium during a 30 min treatment period. Acetylcholine also induced leaf unrolling in the absence of Ca2+ when 100 μ M NaCl was present in the medium. Apart from ACh, only carbamylcholine out of the choline derivatives tested was active in induction of leaf unrolling in the presence of 1 m M Ca2+. The ACh receptor antagonists, atropine (10 μ M ) AND D-tubocurarine (10 μ M ), nullified the ACh-induced Ca2+- and Na+-dependent leaf unrolling, respectively. Muscarine and nicotine, agonists of ACh, at 1 μ M stimulated leaf unrolling in the presence of Ca2+ and Na+, respectively. The ACh-induced Ca2+-dependent leaf unrolling was reduced by 1 μ M Nifedipine, 10 μ M Li+ and 10 μ M "calmodulin" inhibitor, trifluoperazine (TFP), whereas only TFP was active in the reduction of the Na+-dependent ACh-induced leaf unrolling response. It is proposed that leaf unrolling of dark-grown primary wheat leaves can be regulated by phytochrome and by activation of two different types of ACh receptors.  相似文献   

2.
The role of the active form of phytochrome in Zea mays on the polyphosphoinositide cycle was studied. As little as 15 s of red irradiation of etiolated leaves immediately increased the level of phosphatidylinositol bisphosphate (PIP2) 3–6-fold compared to unirradiated leaves. The elevated level of PIP2 decreased with longer red irradiations up to 5 min, but remained higher than in unirradiated leaves. The level of PIP2 decreased if red irradiation was followed by far-red irradiation. Far-red alone had no effect. Levels of phosphatidylinositol phosphate (PIP) and phosphatidylinositol did not change significantly. Since red irradiation significantly changed PIP, but not PIP, photocontrol appears to be at the PIP kinase and phospholipase level. In related studies of the effect of light on phospholipids, 5 min of red irradiation induced significant decreases in phosphatidylcholine and phosphatidylethanola-mine.  相似文献   

3.
Emission spectra of the red phytochrome form (Pr) and fluence time-response curves of the Pr fluorescence intensity changes were measured in etiolated pea seedlings at low temperatures (80–150 K) in connection with its phototransformations into the initial photoproduct (Lr) and back upon actinic red (667 nm) and far-red (696 nm) illumination. The variable fluorescence reaches 45% at 85 K and decreases with the rise of temperature. Three kinetic components of the changes were found in the direct (Pr→Lr) and back (Lr→Pr) photoreactions belonging to three states of phytochrome: “slow”, “fast” and “very fast” (respective indices: s, f and vf). The amplitudes of the components and rate constants to reach photoequilibrium were determined in the direct and back photoreactions at different temperatures, and from this, their quantum yields, extent of the Pr?Lr phototransformation and activation energy of the reactions were evaluated for the three Pr and Lr states. The yields differ from each other by approximately a factor of 10 and those for the direct and back photoreactions are close to each other. The proportion of the amplitudes of the variable fluorescence of the three phytochrome states changes with temperature and upon the Pr→Lr photo-transformation and the Pr states differ in the position of their emission spectra by 3–5 nm. A close similarity between the Pr and Lr properties was observed, which implies a symmetrical scheme of their photoreactions. It is suggested that the three phytochrome species may originate in different conformational states of the chromophore and they independently transform in parallel photoreactions into the respective photoproducts: Prvf?Lrvf, Prf?Lrf and Prs?Lrs.  相似文献   

4.
A series of polycondensed aromatic N-heterocycles (acridine, benzo-f-quinoline 1,2,7,8-dibenzacridine and 3,4,5,6-dibenzacridine) were adsorbed from the gas phase and from liquid solution on highly dispersed silica gels with very different specific surface areas and pore sizes. The translational mobility of the adsorbed species was quantified by the triplet decay and the delayed fluorescence following bimolecular triplet-triplet annihilation after pulsed laser irradiation. The decay kinetics were analyzed with conventional second order rate equations and with the fractal approach. The first method is reliable without limitations on adsorbents with large pore diameters. It yields second order annihilation constants of 4 times 1012-6 times 1011 dm2 mol?1 s?1 depending on the masses and sterical requirements of the adsorbates. For the second method a spectral dimension ds= 4/3 was used. This method is quantitatively applicable to all heterocycles adsorbed on silica gel 60 that have very small pore sizes. An activation energy of 4.9 ± 0.5 kcal mol?1 was obtained for the translational diffusion of acridine on hydroxylated silica gel.  相似文献   

5.
Abstract— The hypocotyl of the tomato ( Lycopersicon esculentum ) seedling synthesizes large amounts of anthocyanin if exposed to prolonged light. Single light pulses are totally ineffective. The involvement of phytochrome can be shown by light pulse treatments following a prolonged light exposure. It is predominantly the action of blue/UV light which leads to a high responsiveness of anthocyanin synthesis towards phytochrome. Moreover, the data suggest a phytochrome-independent action of blue/UV light, in particular of UV-B, on anthocyanin synthesis.  相似文献   

6.
The aggregation of phytochrome purified from etiolated pea ( Pisum satirum cv. Alaska) and rye ( Secale cereale cv. Cougar) tissues was investigated by centrifugation and turbidimetry. Purified pea phytochrome (A669/A280= 0.88), if irradiated with red light, became precipitable in the presence of CaCl2. The precipitation upon red-light irradiation was optimal at a Ca2- or Mg2+ concentration of 10–20 m M , was greater at increased phytochrome concentration or lower pH values, and was inhibited by 0.1 M KG. The precipitated phytochrome slowly became soluble after far-red light exposure.
Turbidity of pea phytochrome solutions after red-light irradiation also increased rapidly in the presence of either Ca2+ or Mg2+. Far-red light exposure after the red light cancelled the turbidity increase. Rye phytochrome showed less turbidity increase than pea phytochrome and occurred only in the presence of Ca2+. Partially degraded pea phytochrome produced by endogenous proteases in the extract did not show the turbidity increase. Undegraded pea phytochrome also associated with microsomal fractions under conditions similar to those described above, but the partially degraded phytochrome did not.  相似文献   

7.
Gas exchange techniques were employed to study responses of stomatal conductance to pulses of red and blue light in the grass, Zea mays. Zea mays exhibited conductance increases following brief (< 1 min) pulses of either red or blue light, in contrast to other species (e.g. Commelina communis; Assmann, 1988, Plant Physiol. 87 , 226–231) that exhibit consistent conductance responses only to pulses of blue light. Red light pulses of 450 μmol m?2s?1 for x min or 225 μmol m?2s?1 for 2x min were used to probe the fluence dependence of the red light response. The red light-stimulated conductance increase was constant for a given fluence, and increased with increasing total fluence. The conductance response to red light was larger in field grown plants (maximum growth irradiance ? 1600 μmol m-2s?l) than in plants raised in growth chambers (maximum growth irradiance ? 150 μmol m?2s?1).  相似文献   

8.
Hook opening and leaf expansion, measured 24 h after standard red light illumination, were considered as parameters determining the photoactivity of etiolated Phaseolus vulgaris L. seedlings. The experiment was repeated every h during one 17-h period each month for 1 year. The mean values for each experimental period indicated that the photoactivity of the etiolated seedlings changed markedly throughout the year according to a seasonal pattern.  相似文献   

9.
Abstract— Hypocotyl straight growth in mustard (Sinapis alba L.) responds very strongly and in precisely the same way to low fluence rate red (RL) and white light (WL). The effect of weak light can be attributed fully to light absorption by phytochrome. Only with increasing fluence rate an effect of blue light (BL) comes into play which cannot be explained by the action of phytochrome. However, this specific action of BL can be demonstrated in hypocotyl growth of mustard seedlings only up to 5 days after sowing (25°C). With older seedlings control of hypocotyl growth seems to be exerted exclusively via phytochrome. Regarding the far-red light dependent “high irradiance reaction” (FR-HIR) it was found that it plays a dominant role in growth of mustard only during a relatively short period. It tends to disappear in favor of a RL-HIR between 3 and 4 days after sowing. It is concluded that the seedling exhibits a largely endogenous temporal pattern of responsiveness to light. Phototropism of the mustard seedling can be elicited by low fluence rates (< 1 mW m?2) of unilateral BL. This same light has no effect on straight growth. It is concluded that BL-dependent phototropic growth response of a hypocotyl and the effect of BL on longitudinal growth of the hypocotyl are unrelated phenomena.  相似文献   

10.
Abstract— The aim of this work was to compare the translatability of poly-A-RNA from light- and dark-grown Arena seedlings, the product of which should be phytochrome. Polysomal poly-A-RNA was isolated from 4-day-old dark-grown Avena seedlings (Avena sativa L. cv. Garry) and translated in a rabbit reticulocyte lysate system. Immunoprecipitation by anti-phytochrome serum was used for measurements of specific phytochrome translation. Characterization of the translated and immunoprectpitated protein was performed by comparison with [35S]-methionine in vivo-labelled phytochrome. The specificity of the precipitation was shown by parallel use of non-specific serum and by competitive inhibition of precipitation by exogenous unlabelled phytochrome isolated by affinity chromatography.  相似文献   

11.
Abstract— A simple, low cost modification of a conventional single wavelength spectrophotometer (e.g. Cary 118C) enables one to quantitate phytochrome in crude extracts and purified phytochrome preparations without the use of a dual-wavelength ratio spectrophotometer.  相似文献   

12.
A METHOD FOR MEASURING PHYTOCHROME IN PLANTS GROWN IN WHITE LIGHT   总被引:3,自引:0,他引:3  
Abstract— Quantitative spectrophotometric measurement of phytochrome in plants grown for relatively long periods of time in white light is not possible due to the presence of chlorophyll. A method is described that prevents the accumulation of chlorophyll permitting such direct spectrophotometric measurement in light-grown tissue. Oat seedlings grown in the presence of the herbicide San 9789† (Norflurazon) for 6 days in constant light have considerably less chlorophyll than etiolated seedlings exposed to 1 min of light. Phytochrome concentrations measured in vivo and in vitro in these herbicide-treated plants were found to be about 2% of the level in etiolated tissue.  相似文献   

13.
Abstract— The relative phytochrome photoconversion rates in cotyledons and hypocotylar hook of etiolating mustard ( Sinapis alba L.) seedlings were measured between 16 and 96 h after sowing. It was found that at constant fluence rates photoconversion rate in red light increases in both organs with time whereas the photoconversion rate in far-red (756 nm) light decreases with time of development. Since the isosbestic point remains constant, it was concluded that the observed changes cannot be attributed to changes of extinction coefficients. It was not possible, however, to decide whether the observed changes are due to changes of light attenuation or quantum yields.  相似文献   

14.
The strong effect of light pretreatments on the synthesis of chlorophyll-a and-b in the shoot of Sorghum vulgare (kept under saturating white light) can be attributed to phytochrome only. No specific blue light effect was found. The phytochrome system appears to function perfectly normally under these conditions. Escape from reversibility is not detectable up to approximately 40 min after the onset of an inductive red light pulse. Thereafter, escape is fast, being completed at approximately 2.5 h after the inductive light pulse.  相似文献   

15.
The photocontrol of hypocotyl elongation has been studied in etiolated and light-grown wild type (WT) Arabidopsis thaliana (L. Heynh) seedlings, and in two homozygous isogenic lines that have been transformed with the oat phy A gene coding sequence under the control of the cauliflower mosaic virus (CaMV) 35S promoter. For etiolated seedlings the inhibition of hypocotyl elongation by continuous broad band far-red light (FR) is saturated at much lower photon fluence rates in the transgenic seedlings compared with WT seedlings. Furthermore, whereas de-etiolation of WT seedlings leads to loss of responsiveness of the hypocotyls to prolonged FR, de-etiolated transgenic seedlings continue to show a pronounced FR-mediated inhibition of elongation. This may reflect the persistence of a FR-high irradiance response (HIR) mediated by the introduced oat phytochrome A. Although the hypocotyls of light-grown transgenic seedlings display a qualitatively normal end-of-day FR growth promotion, such seedlings display an aberrant shade-avoidance response to reduced red:far-red ratio (R:FR). These results are discussed in relation to the proposal that the constitutive expression of phytochrome A leads to the persistence of photoresponse modes normally restricted to etiolated plants.  相似文献   

16.
Abstract— Based on measurements with a single beam spectrophotometer, it has been found that subsequent red/far red irradiation cycles, which are usually given to monitor phytochrome content by dual wavelength spectroscopy, induce chlorophyll-related absorption changes in maize coleoptiles. Therefore, the difference signal, usually measured between 730 and 800 nm or 660 and 730 nm after saturating red and far red irradiations, does not represent solely the phytochrome content of preirradiated samples.  相似文献   

17.
Abstract. Cotyledons of etiolated gherkin seedlings do not turn green upon transfer to high intensity red light (about 25 W/m2). A pre-irradiation with high intensity red light has an after-effect as chlorophyll accumulation during a subsequent exposure to white light (20 W/m2) is inhibited.
The capacity of protochlorophyll regeneration during a dark period depends on the length of a previous light period but is hardly affected by the light intensity. At high intensity light the rate of protochlorophyll regeneration, which also depends on the length of the foregoing irradiation, is lower than that at low intensity light only during the first 1.5h of the light period. It is concluded that high intensity red light inhibits chlorophyll accumulation mainly by photo-bleaching of chlorophyll. The after-effect is the result of a photooxidation which may lead to photo-bleaching of newly formed chlorophyll in relatively low intensity light.
Photoinhibition of chlorophyll accumulation is accompanied by a disturbed development of etioplasts into chloroplasts.  相似文献   

18.
Abstract— Photosynthetic quantum conversion and early electron transport is modeled as a stochastic process on a digital computer to determine what free-energy losses are a necessary consequence of specific assumptions about the reaction structure, kinetics, and thermodynamics of the participating molecules. Maximal free-energy yield requires that all dark reactions be near equilibrium, so the potentials of all half-cells on each side of the light act are nearly the same. This near equilibrium requires that all forward rate constants be at least 102 times the rate of light absorption, and that all reverse rate constants be at least the rate of light absorption. The behavior of model systems with one primary donor and one primary acceptor is comparatively independent whether there is one or an infinite number of secondary electron donors and acceptors. A system having no metastable (e.g. triplet) state of the light-activated donor can convert light energy with nearly ideal efficiency, provided that the standard electrode potentials of the primary donor and primary acceptor half-cells are precisely located with respect to one another and to the potentials of the ultimate donor and acceptor. While not necessary for near maximal free-energy yield, a metastable intermediate allows a flexibility in the choice of half-cell potentials which is not possible in the absence of such an intermediate.  相似文献   

19.
Abstract— Mature Sinapis alba L. and Impatiens parviflora DC. were treated with the herbicide norfiuorazon prior to development of the third or second leaf, respectively. This treatment yielded a partially bleached plant capable of normal growth and development. The bleached leaves were used for spectrophotometric phytochrome assay. In mature plants an almost constant level of phytochrome is maintained under continuous white light. The dark kinetics and the response of the phytochrome system to light of various qualities provide further evidence of the stable character of the phytochrome system.  相似文献   

20.
Abstract— Photoreactivating enzyme (PRE) activity was measured in hypocotyls of Phaseolus vulgaris L. seedlings using a radioimmunoassay for thymine dimers. In dark-grown seedlings a five-fold increase in PRE activity was observed after 6 h of irradiation with blue or far-red light. Short time irradiations with red light were also effective. Reversibility of this red-light-effect by a subsequent short term irradiation with far-red light and also the high effectiveness of continuous far-red light indicate that PRE activity is under phytochrome control. This observation points to PRE induction via gene activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号