首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
Schiff base (L) ligand is prepared via condensation of pyridine-2,6-dicarboxaldehyde with -2-aminopyridine. The ligand and its metal complexes are characterized based on elemental analysis, mass, IR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). The molar conductance reveals that all the metal chelates are non-electrolytes. IR spectra shows that L ligand behaves as neutral tridentate ligand and bind to the metal ions via the two azomethine N and pyridine N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III), Fe(III), Co(II), Ni(II), Cu(II), and Th(IV)) and tetrahedral (Mn(II), Cd(II), Zn(II), and UO2(II)). The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also was screened for its antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data shows that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.  相似文献   

2.
A new series of transition metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) have been synthesized from the Schiff base (L) derived from 4-aminoantipyrine, 3-hydroxy-4-nitrobenzaldehyde and o-phenylenediamine. Structural features were obtained from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV-Vis, 1H NMR and ESR spectral studies. The data show that these complexes have composition of ML type. The UV-Vis, magnetic susceptibility and ESR spectral data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The redox behaviour of copper and vanadyl complexes was studied by cyclic voltammetry. Antimicrobial screening tests gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that Cu, Ni and Co complexes cleave DNA through redox chemistry whereas other complexes are not effective.  相似文献   

3.
The literature survey highlights spectra and biological activity of transition metal complexes derived from Schiff bases of quinoxaline. The extensive studies of synthesis, spectral, structural characterization, and biological activities of the metal complexes with heterocyclic Schiff bases of quinoxaline are reviewed.  相似文献   

4.
Synthesis of a new Schiff base derived from 2-hydroxy-5-methylacetophenone and glycine and its coordination with compounds Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and UO2(VI) are described. The ligand and complexes have been characterized on the basis of analytical, electrical conductance, infrared, ESR and electronic spectra, magnetic susceptibility measurements, and thermogravimetric analysis. The ligand is a dibasic tridentate (ONO) donor in all the complexes except Zn(II), where it is a monobasic bidentate (OO) donor. The solid state DC electrical conductivity of ligand and its complexes have been measured over 313–398 K, and the complexes were semiconducting. Antibacterial activities of ligand and its metal complexes have been determined by screening the compounds against various Gram (+) and Gram (?) bacterial strains.  相似文献   

5.
A new series of transition metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), Cd(II), Hg(II), and VO(IV) have been designed and synthesized from the Schiff base derived from cinnamidene-4-aminoantipyrine and 2-aminophenol by involving the carbonyl group of 4-aminoantipyrine. The structural features have been arrived from their elemental analyses, magnetic susceptibility, molar conduction, FAB mass, IR, UV-Vis, 1H NMR and ESR spectral studies. The data show that the complexes have composition of the ML2 type. The UV-Vis, magnetic susceptibility, and ESR spectral data of the complexes suggest an octahedral geometry around the central metal ion except the VO(IV) complex, which has a square-pyramidal geometry. The redox behavior of the copper and vanadyl complexes has been studied by cyclic voltammetry. The antimicrobial activity of the ligand and its complexes has been extensively studied on microorganisms such as Salmonella typhi, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Aspergillus niger, and Rhizoctonia bataicola. It has been found that most of the complexes have higher activities than that of the free ligand. The nuclease activity of the above metal complexes shows that the complexes cleave DNA through redox chemistry. In the presence of H2O2, the complexes are capable of cleaving calf thymus DNA. The text was submitted by the authors in English.  相似文献   

6.
A new ONNO‐type azomethine ligand, 2,2′‐(ethane‐1,2‐diylidenedinitrilo)dibenzoic acid, (YLH2) ( 1 ) has been prepared by the condensation of 2‐aminobenzoic acid and glyoxal. The coordination compounds [Ni(YL)] ( 2 ), [Co(YL)] ( 3 ), [Cu(YL)(H2O)] ( 4 ), [Zn(YL)] ( 5 ), and [Cd(YL)] ( 6 ) of the YLH2 ligand with five transition metal ions, Ni(II) Co(II), Cu(II), Zn(II), and Cd(II) have been prepared. The structures of these new azomethine compounds are proposed on the basis of the elemental analyses, proton nuclear magnetic resonance, infrared, ultraviolet–visible spectroscopy, and X‐ray powder diffraction patterns. Elemental analyses indicate a ligand metal ratio of 1:1 in the coordination compounds. X‐ray powder diffraction parameters for [Cu(YL)(H2O)] and [Cd(YL)] compounds correspond to orthorhombic and monoclinic structures, respectively. The ligand acts as a tetradentate ligand bending through oxygen atoms of the hydroxyl groups of benzoic acid and nitrogen atoms of the azomethine groups. In addition, the ligand and its metal complexes have been studied for their possible genotoxic potential. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 22:119–130, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20665  相似文献   

7.
8.
Neutral tetradentate chelate complexes of CuII, NiII, CoII, MnII, ZnII and VOII have been prepared in EtOH using Schiff bases derived from acetoacetanilido-4-aminoantipyrine and 2-aminophenol/2-aminothiophenol. Microanalytical data, magnetic susceptibility, i.r., u.v.–vis., 1H-n.m.r. and e.s.r. spectral techniques were used to confirm the structures of the chelates. Electronic absorption and i.r. spectra of the complexes suggest a square-planar geometry around the central metal ion, except for VOII and MnII complexes which have square-pyramidal and octahedral geometry respectively. The cyclic voltammetric data for the CuII complexes in MeCN show two waves for copper(II) copper(III) and copper(II) copper(I) couples, whereas the VOII complexes in MeCN show two waves for vanadium(IV) vanadium(V) and vanadium(IV) vanadium(III) couples. The e.s.r. spectra of the CuII, VOII and MnII complexes were recorded in DMSO solution and their salient features reported. The in vitro antimicrobial activity of the investigated compounds was tested against the microorganisms such as Salmonella typhi, Staphylococcus aureus, Klebsiella pneumoniae, Bacillus subtilis, Shigella flexneri, Pseudomonas aeruginosa, Aspergillus niger and Rhizoctonia bataicola. Most of the metal chelates have higher antimicrobial activity than the free ligands.  相似文献   

9.
Salicylaldehyde-4-methylthiosemicarbazone (H2MTSali) has been prepared via the condensation reaction of 4-methyl-3-thiosemicarbazide and salicylaldehyde. Four new mixed-ligand copper(II) and nickel(II) complexes with a general formula [M(MTSali)L] (M = Cu2+ or Ni2+; L = co-ligand) were synthesized, where L is either imidazole (im) or benzimidazole (bzim). The Schiff base and its mixed-ligand complexes were characterized by IR and UV/Vis spectroscopy, and the complexes by molar conductivity and magnetic susceptibility measurements. The spectroscopic data indicated that the Schiff base behaves as a tridentate ONS donor ligand coordinating via the phenoxide-oxygen, azomethine-nitrogen, and thiolate-sulphur atoms. Magnetic data indicate a square planar environment for the nickel(II) complexes while molar conductance values indicate that the metal complexes are essentially non-electrolytes in DMSO solution. X-ray crystallography shows Cu(MTSali)bzim (1) and Ni(MTSali)bzim (3) to be isostructural, with the metal(II) ions being coordinated by a N2OS donor set that defines an approximate square planar geometry; in both cases, the benzimidazole is splayed with respect to the coordination plane. The copper(II) complexes were active against MDA-MB-231 and MCF-7 breast cancer cell lines, more so than H2MTSali, whereas the nickel(II) complexes were inactive.  相似文献   

10.
Monatshefte für Chemie - Chemical Monthly - In the present research, novel unsymmetrically substituted triazole-derived Schiff base ligand...  相似文献   

11.
The synthesis of a new Schiff base derived from 2-hydroxy-5-chloroacetophenone and 4-amino-5-mercapto-3-methyl-1,2,4-triazole and its coordination compounds with Ti(III), VO(IV), Cr(III), Mn(III), Fe(III), Zr(IV), MoO2(VI), and UO2(VI) are described. The ligand and the complexes have been characterized on the basis of analytical, electrical conductance, molecular weight, IR and electronic spectra, magnetic susceptibility measurements, and thermogravimetric analysis. The ligand acts as a dibasic tridentate molecule. Antibacterial activities of the ligand and its metal complexes have been determined by screening the compounds against E. coli, S. typhi, P. aeruginosa, and S. aureus. The solid state de electrical conductivity of the ligand and its complexes have been measured over 313–403 K, and the complexes were found to be of semiconducting nature. The article was submitted by the authors in English.  相似文献   

12.
Summary The electrochemical behaviour of a series of mononuclear and dinuclear complexes of dioxouranium(VI), nickel(II) and copper(II) ions with the Schiff base, H4fsalacen, derived from the condensation of 3-formylsalicylic acid and 1,2-diaminoethane, is reported.The potentially hexadentate compartmental ligand H4fsalacen has an outer O2O2 and an inner N2O2 coordination site. The redox properties of the metal ions in these two different and adjacent chambers have been investigated and compared with those of the analogous complexes with the ligand H4 aapen, obtained by reaction ofo-acetoacetylphenol and 1,2-diaminoethane.A preliminary report was presented at the 1st International Conference on the Chemistry and Technology of the Lanthanides and Actinides, Venice, 5 September, 1983, Italy.  相似文献   

13.
Polychelates of Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and VO(IV) with a new bis-chelating Schiff base derived from 5-acetyl-2,4-dihydroxyacetophenone and isonicotinic acidhydrazide have been synthesized. The resulting polychelates have been characterized by elemental analyses, IR and electronic spectral data, magnetic susceptibility measurements and thermogravimetric analysis. All the polychelates are dark coloured solids and insoluble in water and common organic solvents. Thermogravimetric analyses confirm coordination of water in complexes. Various kinetic and thermodynamic parameters have been evaluated from thermal data. The ligand acts as a bis-tridentate molecule coordinating through deprotonated phenolic/enolic oxygen atoms and azomethine nitrogen atoms. The solid-state conductivity of ligand and its polychelates have been measured in their compressed pellet form and all compounds were found to be semiconducting in nature.  相似文献   

14.
Summary Two new Schiff bases, N-4-hydroxysalicylidene-glycylglycine (K·GGRS·H2O), N-O-vanillal-glycylglycine (K· GGVS·3H2O) and their manganese(II), cobalt(II), nickel(II) and copper(II) complexes have been synthesized and characterized by elemental analysis, t.g.a., molar conductance, i.r. and u.v. spectral studies. The 13Cn.m.r. spectrum of one of the Schiff base ligands has been recorded. The results show that the ligand is coordinated to the central metal ion via amide nitrogen, imino nitrogen, phenolic oxygen and carboxyl oxygen to form a quadridentate complexes. Some of the complexes exhibit strong inhibitory action towards Candida albicans and Cryptococcus neoformans.  相似文献   

15.
A novel Schiff base, 3-(((1H-1,2,4-triazol-3-yl)imino)methyl)-4H-chromen-4-one (L) was synthesized and used as ligand for the synthesis of Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) complexes. The structural characterization of the ligand and its metal complexes was determined by using various physicochemical and spectroscopic methods. The IR data show that the Schiff base ligand acts as a bidentate donor coordinating through the oxygen atom of the chromone and nitrogen atom of the imine group. Based on all spectral data, tetrahedral geometry has been proposed for all the metal complexes except Cu(II) and Pd(II) complexes. However, square-planar geometry has been proposed for Cu(II) and Pd(II) complexes. DNA binding interaction of the ligand and its metal complexes was investigated by using UV–visible absorption, fluorescence and molecular docking studies. The binding constants were in the order of 104 M?1 suggesting good binding affinity towards CT-DNA. The DNA cleavage activity of the synthesized compounds was investigated by using agarose gel electrophoresis. In vitro antimicrobial activity of the synthesized compounds were screened against two gram-positive bacteria (Bacillus subtilis, Staphylococcus aureu) and two gram-negative bacteria (Escherichia coli, Proteus vulgaris) and one fungi strain Candida albicans using disc diffusion method. Antioxidant activity was carried out by DPPH radical scavenging method. In vitro anti-proliferative activity of the ligand and its metal complexes was also carried on the HEK-293, HeLa, IMR-32 and MCF-7 cancer cell lines using MTT assay.  相似文献   

16.
The synthesis in one‐pot reactions and structural characterization of six new tri‐n‐butyltin(IV) derivatives of Schiff bases are reported. The compounds are derived from a condensation reaction between l ‐alanine, l ‐valine, l ‐isoleucine, l ‐methionine, l ‐phenylalanine or l ‐tryptophan and 3,5‐di‐tert‐butyl‐2‐hydroxybenzaldehyde. Characterization was completed using elemental analysis, infrared spectroscopy, mass spectrometry, one‐ and two‐dimensional solution NMR (1H, 13C and 119Sn) as well as solid‐state 119Sn NMR. In addition, the crystal structures of three of the compounds were confirmed using single‐crystal X‐ray diffraction. Although five‐coordinated and polymeric in the solid state, the tin compounds are four‐coordinated and monomeric in solution. The coordination environment around the triorganotin units comprises three carbon atoms and two oxygen atoms from two ligands in a trigonal bipyramidal geometry. The anti‐proliferative effect of these compounds on the cervical carcinoma cell lines HeLa, CaSki and ViBo was screened in vitro, the compounds showing cytotoxic activity against all three strains and null or low cytotoxic activity (necrotic) as well. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Several mononuclear Co(II), Ni(II), Cu(II), and Fe(II) complexes of tetradentate salpren-type diimine, obtained from 3,5-di-tert-butyl-2-hydroxybenzaldehyde and 1,3-diaminopropane have been prepared and characterized by analytical, spectroscopic (FT-IR, UV–VIS) techniques, magnetic susceptibility measurements and thermogravimetric analyses (TG). The thermodynamic and thermal properties of complexes have been investigated. For further characterization Direct Insertion Probe-Mass Spectrometry (DIP-MS) was used and the fragmentation pattern and also stability of the ions were evaluated. The characterization of the end products of the decomposition was achieved by X-ray diffraction. The thermal stabilities of metal complexes of N,N′-bis(3,5-di-t-butylsalicylidene)-1,3-propanediamine ligand (L) were found as Ni(II) > Cu(II) > Co(II) > Fe(II).  相似文献   

18.
Metal complexes derived from 2,6-pyridinedicarboxaldehydebis(p-hydroxyphenylimine); L1, 2,6-pyridinedicarboxaldehydebis (o-hydroxyphenylimine); L2, are reported and characterized based on elemental analyses, IR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The complexes are found to have the formulae [MX2(L1 or L2)] x nH2O, where M=Fe(II), Co(II), Ni(II), Cu(II) and Zn(II), X=Cl in case of Fe(II), Co(II), Ni(II), Cu(II) complexes and Br in case of Zn(II) complexes and n=0-2.5. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the Schiff bases are coordinated to the metal ions in a terdentate manner with NNN donor sites of the pyridine-N and two azomethine-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are trigonal bipyramidal (in case of Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (in case of Fe(II) complexes). The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the coordinated water, anions and ligands (L1 and L2) in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the TG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent organic ligands against one or more bacterial species.  相似文献   

19.
New complexes of a Schiff base derived from 2-hydroxy-5-chloroacetophenone and glycine with Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and UO2(VI) have been synthesized. The ligand and the complexes have been characterized on the basis of analytical data, electrical conductance, IR, ESR, and electronic spectra, magnetic susceptibility measurements and thermogravimetric analysis. The ligand acts as a dibasic tridentate (ONO) donor molecule in all the complexes except the Zn(II) complex, where it acts as a monobasic bidentate (OO) donor. Antibacterial activities of the ligand and its metal complexes have been determined by screening the compounds against various Gram(+) and Gram(−) bacterial strains. The solid state d.c. electrical conductivity of the ligand and its complexes has been measured over 313–398 K and the complexes were found to be of semiconducting nature. The article is published in the original.  相似文献   

20.
Three novel tridentate Schiff base ligands derived fromthe 3-hydroxysalicylaldehyde (H2L1), 4-hydroxysalicylaldehyde (H2L2) and 5-bromosalicylaldehyde (H2L3) with a new amine N-(pyridyl)-2-hydroxy-3-methoxy-5-aminobenzylamine (2) have been prepared. The ligands and their metal complexes have been characterized by elemental analyses, conductivity and magnetic susceptibility measurements, i.r., electronic absorption and 1H and 13C n.m.r. spectroscopy. All complexes are binuclear and, in some, the H2O molecules are coordinated to the metal ion. Antimicrobial activities of the ligands and their complexes have been tested against to the Bacillus subtilis IMG 22 (bacteria), Micrococcus luteus LA 2971 (bacteria) Saccharamyces cerevisiae WET 136 (yeast), and Candida albicans CCM 314 (yeast). Thermal properties of all complexes have been studied by t.g. and d.t.a techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号