首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For a finite group G denote by N(G) the set of conjugacy class sizes of G. In 1980s, J.G.Thompson posed the following conjecture: If L is a finite nonabelian simple group, G is a finite group with trivial center and N(G) = N(L), then G ? L. We prove this conjecture for an infinite class of simple groups. Let p be an odd prime. We show that every finite group G with the property Z(G) = 1 and N(G) = N(A i ) is necessarily isomorphic to A i , where i ∈ {2p, 2p + 1}.  相似文献   

2.
An automorphism α of a group G is called a commuting automorphism if each element x in G commutes with its image α(x) under α. Let A(G) denote the set of all commuting automorphisms of G. Rai [Proc. Japan Acad., Ser. A 91 (5), 57–60 (2015)] has given some sufficient conditions on a finite p-group G such that A(G) is a subgroup of Aut(G) and, as a consequence, has proved that, in a finite p-group G of co-class 2, where p is an odd prime, A(G) is a subgroup of Aut(G). We give here very elementary and short proofs of main results of Rai.  相似文献   

3.
A subgroup K of G is M p -supplemented in G if there exists a subgroup B of G such that G = KB and TB < G for every maximal subgroup T of K with |K: T| = p α. We study the structure of the chief factor of G by using M p -supplemented subgroups and generalize the results of Monakhov and Shnyparkov by involving the relevant results about the p-modular subgroup O p (G) of G.  相似文献   

4.
A subgroup K of G is Mp-supplemented in G if there exists a subgroup B of G such that G = KB and TB < G for every maximal subgroup T of K with |K: T| = pα. In this paper we prove the following: Let p be a prime divisor of |G| and let H be ap-nilpotent subgroup having a Sylow p-subgroup of G. Suppose that H has a subgroup D with Dp ≠ 1 and |H: D| = pα. Then G is p-nilpotent if and only if every subgroup T of H with |T| = |D| is Mp-supplemented in G and NG(Tp)/CG(Tp) is a p-group.  相似文献   

5.
Let G be a finite group and let Γ(G) be the prime graph of G. Assume p prime. We determine the finite groups G such that Γ(G) = Γ(PSL(2, p 2)) and prove that if p ≠ 2, 3, 7 is a prime then k(Γ(PSL(2, p 2))) = 2. We infer that if G is a finite group satisfying |G| = |PSL(2, p 2)| and Γ(G) = Γ(PSL(2, p 2)) then G ? PSL(2, p 2). This enables us to give new proofs for some theorems; e.g., a conjecture of W. Shi and J. Bi. Some applications are also considered of this result to the problem of recognition of finite groups by element orders.  相似文献   

6.
Let G be an abelian group of order n. The sum of subsets A1,...,Ak of G is defined as the collection of all sums of k elements from A1,...,Ak; i.e., A1 + A2 + · · · + Ak = {a1 + · · · + ak | a1A1,..., akAk}. A subset representable as the sum of k subsets of G is a k-sumset. We consider the problem of the number of k-sumsets in an abelian group G. It is obvious that each subset A in G is a k-sumset since A is representable as A = A1 + · · · + Ak, where A1 = A and A2 = · · · = Ak = {0}. Thus, the number of k-sumsets is equal to the number of all subsets of G. But, if we introduce a constraint on the size of the summands A1,...,Ak then the number of k-sumsets becomes substantially smaller. A lower and upper asymptotic bounds of the number of k-sumsets in abelian groups are obtained provided that there exists a summand Ai such that |Ai| = n logqn and |A1 +· · ·+ Ai-1 + Ai+1 + · · ·+Ak| = n logqn, where q = -1/8 and i ∈ {1,..., k}.  相似文献   

7.
Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p and p′ are joined by an edge if there is an element in G of order pp′. We denote by k(Γ(G)) the number of isomorphism classes of finite groups H satisfying Γ(G) = Γ(H). Given a natural number r, a finite group G is called r-recognizable by prime graph if k(Γ(G)) =  r. In Shen et al. (Sib. Math. J. 51(2):244–254, 2010), it is proved that if p is an odd prime, then B p (3) is recognizable by element orders. In this paper as the main result, we show that if G is a finite group such that Γ(G) = Γ(B p (3)), where p > 3 is an odd prime, then \({G\cong B_p(3)}\) or C p (3). Also if Γ(G) = Γ(B 3(3)), then \({G\cong B_3(3), C_3(3), D_4(3)}\), or \({G/O_2(G)\cong {\rm Aut}(^2B_2(8))}\). As a corollary, the main result of the above paper is obtained.  相似文献   

8.
The Bogomolov multiplier B 0(G) of a finite group G is defined as the subgroup of the Schur multiplier consisting of the cohomology classes vanishing after restriction to all abelian subgroups of G. The triviality of the Bogomolov multiplier is an obstruction to Noether’s problem. We show that if G is a central product of G 1 and G 2, regarding K i Z(G i ), i = 1, 2, and θ: G 1G 2 is a group homomorphism such that its restriction \(\theta {|_{{K_1}}}:{K_1} \to {K_2}\) is an isomorphism, then the triviality of B 0(G 1/K 1),B 0(G 1) and B 0(G 2) implies the triviality of B 0(G). We give a positive answer to Noether’s problem for all 2-generator p-groups of nilpotency class 2, and for one series of 4-generator p-groups of nilpotency class 2 (with the usual requirement for the roots of unity).  相似文献   

9.
A subgroup of index p k of a finite p-group G is called a k-maximal subgroup of G. Denote by d(G) the number of elements in a minimal generator-system of G and by δ k (G) the number of k-maximal subgroups which do not contain the Frattini subgroup of G. In this paper, the authors classify the finite p-groups with δd(G)(G) ≤ p2 and δd(G)?1(G) = 0, respectively.  相似文献   

10.
It is proved that, if G is a finite group with a nontrivial normal 2-subgroup Q such that G/Q ~= A 7 and an element of order 5 from G acts freely on Q, then the extension G over Q is splittable, Q is an elementary abelian group, and Q is the direct product of minimal normal subgroups of G each of which is isomorphic, as a G/Q-module, to one of the two 4-dimensional irreducible GF(2)A 7-modules that are conjugate with respect to an outer automorphism of the group A 7.  相似文献   

11.
We study metabelian Alperin groups, i.e., metabelian groups in which every 2-generated subgroup has a cyclic commutator subgroup. It is known that, if the minimum number d(G) of generators of a finite Alperin p-group G is n ≥ 3, then d(G′) ≤ C n 2 for p≠ 3 and d(G′) ≤ C n 2 + C n 3 for p = 3. The first section of the paper deals with finite Alperin p-groups G with p≠ 3 and d(G) = n ≥ 3 that have a homocyclic commutator subgroup of rank C n 2 . In addition, a corollary is deduced for infinite Alperin p-groups. In the second section, we prove that, if G is a finite Alperin 3-group with homocyclic commutator subgroup G- of rank C n 2 + C n 3 , then G″ is an elementary abelian group.  相似文献   

12.
It is proved that, if G is a finite group that has the same set of element orders as the simple group C p (2) for prime p > 3, then G/O 2(G) is isomorphic to C p (2).  相似文献   

13.
Let G be a finite group. The main result of this paper is as follows: If G is a finite group, such that Γ(G) = Γ(2G2(q)), where q = 32n+1 for some n ≥ 1, then G has a (unique) nonabelian composition factor isomorphic to 2 G 2(q). We infer that if G is a finite group satisfying |G| = |2 G 2(q)| and Γ(G) = Γ (2 G 2(q)) then G ? = 2 G 2(q). This enables us to give new proofs for some theorems; e.g., a conjecture of W. Shi and J. Bi. Some applications of this result are also considered to the problem of recognition by element orders of finite groups.  相似文献   

14.
Given a finite group G with socle isomorphic to L 2(q), q ≥ 4, we describe, up to conjugacy, all pairs of nilpotent subgroups A and B of G such that AB g ≠ 1 for all gG.  相似文献   

15.
A k-total coloring of a graph G is a mapping ?: V (G) ? E(G) → {1; 2,..., k} such that no two adjacent or incident elements in V (G) ? E(G) receive the same color. Let f(v) denote the sum of the color on the vertex v and the colors on all edges incident with v: We say that ? is a k-neighbor sum distinguishing total coloring of G if f(u) 6 ≠ f(v) for each edge uvE(G): Denote χ Σ (G) the smallest value k in such a coloring of G: Pil?niak and Wo?niak conjectured that for any simple graph with maximum degree Δ(G), χ Σ ≤ Δ(G)+3. In this paper, by using the famous Combinatorial Nullstellensatz, we prove that for K 4-minor free graph G with Δ(G) > 5; χ Σ = Δ(G) + 1 if G contains no two adjacent Δ-vertices, otherwise, χ Σ (G) = Δ(G) + 2.  相似文献   

16.
Let G be a finite group, and let A be a proper subgroup of G. Then any chief factor H/A G of G is called a G-boundary factor of A. For any Gboundary factor H/A G of A, the subgroup (AH)/A G of G/ A G is called a G-trace of A. In this paper, we prove that G is p-soluble if and only if every maximal chain of G of length 2 contains a proper subgroup M of G such that either some G-trace of M is subnormal or every G-boundary factor of M is a p′-group. This result give a positive answer to a recent open problem of Guo and Skiba. We also give some new characterizations of p-hypercyclically embedded subgroups.  相似文献   

17.
It is proved that, if G is a finite group that has the same set of element orders as the simple group D p (q), where p is prime, p ≥ 5 and q ∈ {2, 3, 5}, then the commutator group of G/F(G) is isomorphic to D p (q), the subgroup F(G) is equal to 1 for q = 5 and to O q (G) for q ∈ {2, 3}, F(G) ≤ G′, and |G/G′| ≤ 2.  相似文献   

18.
Suppose that G is a finite p-group. If G is not a Dedekind group, then G has a non-normal subgroup. We use pM(G) and pm(G) to denote the maximum and minimum of the orders of the non-normal subgroups of G; respectively. In this paper, we classify groups G such that M(G) < 2m(G)?1: As a by-product, we also classify p-groups whose orders of non-normal subgroups are pk and pk+1.  相似文献   

19.
Given a finite group G with socle isomorphic to L n (2 m ), we describe (up to conjugacy) all ordered pairs of primary subgroups A and B in G such that AB g ≠ 1 for all gg.  相似文献   

20.
An edge-coloring of a graph G is an assignment of colors to all the edges of G. A g c -coloring of a graph G is an edge-coloring of G such that each color appears at each vertex at least g(v) times. The maximum integer k such that G has a g c -coloring with k colors is called the g c -chromatic index of G and denoted by \(\chi\prime_{g_{c}}\)(G). In this paper, we extend a result on edge-covering coloring of Zhang and Liu in 2011, and give a new sufficient condition for a simple graph G to satisfy \(\chi\prime_{g_{c}}\)(G) = δ g (G), where \(\delta_{g}\left(G\right) = min_{v\epsilon V (G)}\left\{\lfloor\frac{d\left(v\right)}{g\left(v\right)}\rfloor\right\}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号