首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
Inter-storm stable isotopic values of rainfall and throughfall for three flooding events were measured during the period of July to August 2011 to estimate their differences in a first-order chestnut watershed, Meilin, within the Taihu Lake basin. Comparison of δ2H and δ18O was conducted from four aspects: (1) sampling methods, (2) calculation methods, (3) stable isotopes and (4) flood events. Arithmetic and weighted incremental values of throughfall were generally lighter than those of rainfall. Isotopic composition of both incremental rainfall and throughfall exhibits marked temporal variation, particularly during large storm events; the former shows a higher variation than the latter. Differences of averaged precipitation and throughfall between storms were small, but individual storm variations were larger. Isotopic differences using different calculation methods are not significant; however, the differences resulting from sampling methods are of greater importance.  相似文献   

2.
The Tanour spring is one of the several karst springs located in the northern part of Jordan. Water samples from the Tanour spring and precipitation were collected in the area of Ajloun in NW Jordan for the analysis of stable oxygen and hydrogen isotopes to evaluate the spring response to precipitation events. Rainwater and snow samples were collected from different elevations during winters of 2013–2014 and 2014–2015. In addition, spring samples were collected between December 2014 and March 2015. δ18O values in rainwater vary from ?3.26 to ?17.34?‰ (average: ?7.84?±?3.23?‰), while δ2H values range between ?4.4 and ?110.4?‰ (average: ?35.7?±?25.0?‰). Deuterium excess ranges from 17.8 to 34.1?‰ (average: 27.1?±?4.0?‰). The Local Meteoric Water Line for the study area was calculated to be δ2H?=?7.66*δ18O?+?24.43 (R2?=?0.98). Pre-event spring discharge showed variation in δ18O (range ?6.29 to ?7.17?‰; average ?6.58?±?0.19?‰) and δ2H values (range ?28.8 to ?32.7?‰; average: ?30.5?±?1.0?‰). In contrast, δ18O and δ2H rapidly changed to more negative values during rainfall and snowmelt events and persisted for several days before returning to background values. Spring water temperature, spring discharge, and turbidity followed the trend in isotopic composition during and after the precipitation events. The rapid change in the isotopic composition, spring discharge, water temperature, and turbidity in response to recharge events is related to fast water travel times and low storage capacity in the conduit system of the karst aquifer. Based on the changes in the isotopic composition of spring water after the precipitation events, the water travel time in the aquifer is in the order of 5–11 days.  相似文献   

3.
An isotopic monitoring was undertaken in 2012–2014 at Lake ?abińskie (Mazurian Lakeland, NE Poland). The aim was to identify the factors and processes controlling an isotopic composition of the lake water and to explore the mechanism responsible for recording the climatic signal in stable isotope composition of deposited carbonates. δ18O and δ2H in the precipitation, lake water column, inflows and outflow, δ18O and δ13C in the carbonate fraction of sediments trapped in the water column were recorded with monthly resolution. A relationship between δ18O and δ2H in local precipitation was used to estimate the local meteoric water line. The dataset obtained for the water enabled to identify the modification of the water’s isotopic composition due to evaporation, connected with seasonal lake water stratification and mixing patterns. Statistically significant correlation coefficients suggest that the δ18O of the carbonate fraction in the sediment traps depends on the δ18O of rainfall water and on air temperature. The fractionation coefficient α shows that in summer months the carbonate precipitation process is closest to equilibrium. As expected for an exorheic lake, no significant correlation was observed between δ18O and δ13C in precipitated carbonate.  相似文献   

4.
Stable isotopes of hydrogen and oxygen were used to examine how the isotopic signal of meteoric water is modified as it travels through soil and epikarst into two caves in Florida. Surface and cave water samples were collected every week from February 2006 until March 2007. The isotopic composition of precipitation at the investigated sites is highly variable and shows little seasonal control. The δ18O vs. δ2H plot shows a mixing line having a slope of 5.63, suggesting evaporation effects dominate the isotopic composition of most rainfall events of less than 8 cm/day, as indicated by their low d-excess values. The δ18O values of the drip water show little variability (<0.6‰), which is loosely tied to local variations in the seasonal amount of precipitation. This is only seen during wintertime at the Florida Caverns site.

The lag time of over two months and the lack of any relationship between rainfall amount and the increase in drip rate indicate a dominance of matrix flow relative to fracture/conduit flow at each site. The long residence time of the vadose seepage waters allows for an effective isotopic homogenisation of individual and seasonal rainfall events. We find no correlation between rainfall and drip water δ18O at any site. The isotopic composition of drip water in both caves consistently tends to resemble the amount-weighted monthly mean rainfall input. This implies that the δ18O of speleothems from these two caves in Florida cannot record seasonal cycle in rainfall δ18O, but are suitable for paleoclimate reconstructions at inter-annual time scales.? Revised version of a paper presented at the 9th, Symposium of the European Society for Isotope Research (ESIR), 23 to 28 June 2007, Cluj-Napoca, Romania.   相似文献   

5.
Abstract

D and 18O distributions were investigated in Antarctic precipitation (falling snow) and in water vapour to study their dependance on season and sampling site. Long-term sampling at the former German Georg Forster Station during 1978–93 and at the Japanese Syowa Station during 1994–97 allow conclusions about the present seasonal isotopic variations in the water inflow to Antarctica. The δD and δ18O values of precipitation at these East Antarctic coastal stations were compared with corresponding data from the West Antarctic Georg von Neumayer and Halley stations. The monthly means of these long-term data sets show typical hysteresis-like seasonal patterns of isotopic composition. Significant time lags exist regarding station temperatures, while water vapour δD values do not show such hysteresis patterns. Here, half-yearly and even quarter-yearly time components were found by Fourier analysis. Attempts were made to describe the variation in δD and δ18O values of water vapour and precipitation as well as in the resulting deuterium excess by the mixed cloud isotopic model (MCIM) of Ciais and Jouzel.  相似文献   

6.
By using 233 isotope samples, we investigated the spatial and temporal variations of δ18O and δ2H in precipitation and surface water, and the contribution of different water sources in the rivers within the Tarim River Basin (TRB), which receives snow/glacier meltwater, groundwater, and rainfall. Our study revealed a similar seasonal pattern of precipitation δ18O and δ2H at both the north and south edges of the basin, indicating the dominant effect of westerly air masses in the summer and the combined influence of westerly and polar air masses during the winter, although the southern part showed more complex precipitation processes in the summer. River water in the basin has relatively large temporal variations in both δ18O and δ2H showing a distinct seasonal pattern with lower isotope values in May than in September. Higher d-excess values throughout the year in the Aksu river and the Tizinafu river suggest that water may be intensively recycled in the mountains of the TRB. Based on isotopic hydrograph separation, we found that groundwater is the main water source that discharges the entire basin although individual rivers vary.  相似文献   

7.
Based on Global Network Isotopes in Precipitation (GNIP) isotopic data set, a review of the spatial and temporal variability of δ18O and δ2H in precipitation was conducted throughout central and eastern Brazil, indicating that dynamic interactions between Intertropical and South Atlantic Convergence Zones, Amazon rainforest, and Atlantic Ocean determine the variations on the isotopic composition of precipitation over this area. Despite the seasonality and latitude effects observed, a fair correlation with precipitation amount was found. In addition, Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) air mass back trajectories were used to quantify the factors controlling daily variability in stable isotopes in precipitation. Through a linear multiple regression analysis, it was observed that temporal variations were consistent with the meteorological parameters derived from HYSPLIT, particularly precipitation amount along the trajectory and mix depth, but are not dependent on vapour residence time in the atmosphere. These findings also indicate the importance of convective systems to control the isotopic composition of precipitation in tropical and subtropical regions.  相似文献   

8.
Tropical rainfall isotopic composition results from complex processes. The climatological and environmental variability in East Africa increases this complexity. Long rainfall isotope datasets are needed to fill the lack of observations in this region. At Kisiba Masoko, Tanzania, rainfall and rain isotopic composition have been monitored during 6 years. Mean year profiles allow to analyse the seasonal variations. The mean annual rainfall is 2099?mm with a rain-weighted mean composition of ?3.2?‰ for δ18O and ?11.7?‰ for δ2H. The results are consistent with available data although they present their own specificity. Thus, if the local meteoric water line is δ2H?=?8.6 δ18O?+?14.8, two seasonal lines are observed. The seasonality of the isotopic composition in rain and deuterium excess has been compared with precipitating air masses backtracking trajectories to characterize a simple scheme of vapour histories. The three major oceanic sources have two moisture signatures with their own trajectory histories: one originated from the tropical Indian Ocean at the beginning of the rainy season and one from the Austral Ocean at its end. The presented isotopic seasonality depends on the balance of the intertropical front and provides a useful dataset to improve the knowledge about local processes.  相似文献   

9.
Abstract

Representative water samples were collected from different oases in the western desert of Egypt to examine characteristics of Egyptian groundwater. Chemical data recognized two basic groundwater types; alkali bicarbonate and alkali chloride, where sodium has the highest concentration. For each region the median SD, δ18 0 and ionic strength of water calculated from their chemical analyses are recorded and plotted.

Generally, the results of isotopic content measurements of the groundwaters from the different oases in the western desert indicate the fossile origin of these waters. The values of δD and δ18 0 of the western desert oases' waters are characteristic of old paleowaters from the Nubian sand aquifer. Modern sparse rainfall data suggest that any precipitation will exhibit moderate to large positive isotopic content enrichments and cannot be a source for these waters. They have been in no connection with the Nile water, moreover the change in isotopic composition is due to evaporation which is now ineffective at deeper levels.  相似文献   

10.
Based on the monthly δ18O value measured over a hydrology period in precipitation, runoff of five tributaries and the main lake of the Poyang Lake Basin, combined with hydrological and meteorological data, the characteristics of δ18O in precipitation (δ18OPPT) and runoff (δ18OSUR) are discussed. The δ18OPPT and δ18OSUR values range from?2.75 to?14.12 ‰ (annual mean value=?7.13 ‰ ) and from?2.30 to?8.56 ‰, respectively. The seasonal variation of δ18OPPT is controlled by the air mass circulation in this region, which is dominated by the Asian summer monsoon and the Siberian High during winter. The correlation between the wet seasonal averages of δ18OSUR in runoff of the rivers and δ18OPPT of precipitation at the corresponding stations shows that in the Poyang Lake catchment area the river water consists of 23% direct runoff (precipitation) and 77% base flow (shallow groundwater). This high proportion of groundwater in the river runoff points to the prevalence of wetland conditions in the Poyang Lake catchment during rainy season. Considering the oxygen isotopic composition of the main body of Poyang Lake, no isotopic enrichment relative to river inflow was found during the rainy season with maximum expansion of the lake. Thus, evaporation causing isotopic enrichment is a minor component of the lake water balance in the rainy period. During dry season, a slight isotopic enrichment has been observed, which suggests a certain evaporative loss of lake water in that period.  相似文献   

11.
This paper presents the stable isotope data of oxygen (δ18O) and hydrogen (δ2H) in groundwater from 83 sampling locations in Slovenia and their interpretation. The isotopic composition of water was monitored over 3 years (2009–2011), and each location was sampled twice. New findings on the isotopic composition of sampled groundwater are presented, and the data are also compared to past studies regarding the isotopic composition of precipitation, surface water, and groundwater in Slovenia. This study comprises: (1) the general characteristics of the isotopic composition of oxygen and hydrogen in groundwater in Slovenia, (2) the spatial distribution of oxygen isotope composition (δ18O) and d-excess in groundwater, (3) the groundwater isotope altitude effect, (4) the correlation between groundwater d-excess and the recharge area altitude of the sampling location, (5) the relation between hydrogen and oxygen isotopes in groundwater in comparison to the global precipitation isotope data, (6) the groundwater isotope effect of distance from the sea, and (7) the estimated relation between the mean temperature of recharge area and δ18O in groundwater.  相似文献   

12.
The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of?8.6(±0.2) ‰ for δ18O and?58(±2) ‰ for δ2H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of?0.17(±0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.  相似文献   

13.
Seasonal and spatial variation in δ18O and δ2H in rainwater was determined in three selected transects across Sri Lanka, the tropical island in the Indian Ocean. Local meteoric water lines (LMWLs) for three distinguished climatic zones; wet, dry and intermediate were constructed. LMWLs show slight variations in their gradients and respective d-excess values, depending on the air moisture origin, circulation and environmental conditions of each climatic zone. The elevation effect and amount effect could be identified but the continental effect is not significantly seen in the isotope composition of rain in the concerned areas. The results reasonably revealed that the distinct rainfall regimes; two monsoonal rains and two convectional (inter-monsoon) rains have characteristic isotopic signatures. Also the impact of (i) terrestrial and oceanic moisture sources, (ii) depression and cyclonic conditions of the Bay of Bengal, and (iii) topography of the country on the variation of the isotopic composition of rain in Sri Lanka could be satisfactorily identified.  相似文献   

14.
Results of stable isotope measurements (δ2H, δ18O) of daily grab samples, taken from the Danube River at Tulln (river km 1963) during 2012, show seasonal and short-term variations depending on the climatic/hydrological conditions and changes in the catchment area (temperature changes, heavy rains and snow melt processes). Isotope ratios in river water clearly reflect the isotopic composition of precipitation water in the catchment area since evaporation influences play a minor role. Average δ2H and δ18O values in 2012 are?78‰ and?11.0‰, respectively, deuterium excess averages 10‰. The entire variation amounts to 1.8‰ in δ18O and 15‰ in δ2H. Quick changes of the isotopic composition within a few days emphasise the necessity of daily sampling for the investigation of hydrological events, while monthly grab sampling seems sufficient for the investigation of long-term hydro-climatic trends. 3H results show peaks (half-width 1–2 days, up to about 150 TU) exceeding the regional environmental level of about 9 TU, probably due to releases from nuclear power plants.  相似文献   

15.
Isotope ratios of carbon dioxide and water vapour in the near-surface air were continuously measured for one month in an urban area of the city of Nagoya in central Japan in September 2010 using laser spectroscopic techniques. During the passages of a typhoon and a stationary front in the observation period, remarkable changes in the isotope ratios of CO2 and water vapour were observed. The isotope ratios of both CO2 and water vapour decreased during the typhoon passage. The decreases can be attributed to the air coming from an industrial area and the rainout effects of the typhoon, respectively. During the passage of the stationary front, δ13C–CO2 and δ18O–CO2 increased, while δ2H–H2Ov and δ18O–H2Ov decreased. These changes can be attributed to the air coming from rural areas and the air surrounding the observational site changing from a subtropical air mass to a subpolar air mass during the passage of the stationary front. A clear relationship was observed between the isotopic CO2 and water vapour and the meteorological phenomena. Therefore, isotopic information of CO2 and H2Ov could be used as a tracer of meteorological information.  相似文献   

16.
Stable isotopes of hydrogen and oxygen were used to examine how the isotopic signal of meteoric water is modified as it travels through soil and epikarst into two caves in Florida. Surface and cave water samples were collected every week from February 2006 until March 2007. The isotopic composition of precipitation at the investigated sites is highly variable and shows little seasonal control. The delta18O vs. delta2H plot shows a mixing line having a slope of 5.63, suggesting evaporation effects dominate the isotopic composition of most rainfall events of less than 8 cm/day, as indicated by their low d-excess values. The delta18O values of the drip water show little variability (<0.6 per thousand), which is loosely tied to local variations in the seasonal amount of precipitation. This is only seen during wintertime at the Florida Caverns site. The lag time of over two months and the lack of any relationship between rainfall amount and the increase in drip rate indicate a dominance of matrix flow relative to fracture/conduit flow at each site. The long residence time of the vadose seepage waters allows for an effective isotopic homogenisation of individual and seasonal rainfall events. We find no correlation between rainfall and drip water delta18O at any site. The isotopic composition of drip water in both caves consistently tends to resemble the amount-weighted monthly mean rainfall input. This implies that the delta18O of speleothems from these two caves in Florida cannot record seasonal cycle in rainfall delta18O, but are suitable for paleoclimate reconstructions at inter-annual time scales.dagger.  相似文献   

17.
The isotopic composition of air-borne sulphur was investigated in Saxony, Southeast Germany – a region with formerly very high atmospheric SO2 concentrations. In addition, data from various authors were compiled for different Saxonian locations, spanning from 1992 to 2004, i.e., a time of decreasing SO2 concentrations in the atmosphere. There were no obvious temporal changes in the mean δ34S value of bulk precipitation. However, the variability of monthly mean δ34S values decreased. The mean sulphur isotope composition of sulphate from bulk precipitation after the year 2000 converges in Saxony towards 4–5‰, with similar values for different locations. Mean values of different forms of sulphur show the following enrichment order: δ34S of SO2 < δ34S of weathering crusts ≤δ34S of sulphate from bulk precipitation ≤δ34S of dust. Judging from local differences on sulphate crusts and corresponding isotope values of sources, the δ34S value of SO2 as well as for crusts mainly reflects local point sources. The mean δ34S value of bulk precipitation represents more regionally well-mixed SO2 sources and is therefore an ideal tool for monitoring regional atmospheric change.  相似文献   

18.
The linkage between precipitation and recharge is still poorly understood in the Central America region. This study focuses on stable isotopic composition in precipitation and groundwater in the northern mountainous region of the Central Valley of Costa Rica. During the dry season, rainfall samples corresponded to enriched events with high deuterium excess. By mid-May, the Intertropical Convergence Zone poses over Costa Rica resulting in a depletion of 18O/16O and 2H/H ratios. A parsimonious four-variable regression model (r2?=?0.52) was able to predict daily δ18O in precipitation. Air mass back trajectories indicated a combination of Caribbean Sea and Pacific Ocean sources, which is clearly depicted in groundwater isoscape. Aquifers relying on Pacific-originated recharge exhibited a more depleted pattern, whereas recharge areas relying on Caribbean parental moisture showed an enrichment trend. These results can be used to enhance modelling efforts in Central America where scarcity of long-term data limits water resources management plans.  相似文献   

19.
Data from a 10-month monitoring study during 2007 in the Everglades ecosystem provide insight into the variation of δ18O, δD, and ion chemistry in surface water and shallow groundwater. Surface waters are sensitive to dilution from rainfall and input from external sources. Shallow groundwater, on the other hand, remains geochemically stable during the year. Surface water input from canals derived from draining agricultural areas to the north and east of the Everglades is evident in the ion data. δ18O and δD values in shallow groundwater remain near the mean of?2.4 and?12 ‰, respectively. 18O and D values are enriched in surface water compared with shallow groundwater and fluctuate in sync with those measured in rainfall. The local meteoric water line (LMWL) for precipitation is in close agreement with the global meteoric water line; however, the local evaporation line (LEL) for surface water and shallow groundwater is δ D=5.6 δ18O+1.5, a sign that these waters have experienced evaporation. The intercept of the LMWL and LEL indicates that the primary recharge to the Everglades is tropical cyclones or fronts. δ deuterium to δ18O excess (Dex values) generally reveal two moisture sources for precipitation, a maritime source during the fall and winter (D ex>10 ‰) and a continental-influenced source (D ex<10 ‰) in the spring and summer.  相似文献   

20.
The present study examines the isotopic and hydrochemical composition of 18 inland spring waters and 3 coastal karstic spring waters, covering the period between October 2005 and March 2008. The stable isotopes (18O, 2H) processing has revealed the absence of significant evaporation phenomena and that the origin of fresh water samples is meteoric. Using 18O values in rainfall waters, an average line of isotopic depletion with altitude has been constructed, extracting a rate of?0.45‰/100 m as typical for the study area. Furthermore, the mean altitude of recharge of the springs has been estimated by plotting the groundwater sampling points on a δ18O versus altitude diagram. Hydrochemistry results have shown that the dissolution of carbonate, flysch and ophiolitic formations defines the hydrochemical characteristics of groundwater. Moreover, seawater intrusion in the coastal area is significantly high, causing the water in the three karstic springs to be brackish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号