首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Diet–tissue isotopic relationships established under controlled conditions are informative for determining the dietary sources and geographic provenance of organisms. We analysed δ13C, δ15N, and non-exchangeable δ2H values of captive African grey parrot Psittacus erithacus feathers grown on a fixed mixed-diet and borehole water. Diet–feather Δ13C and Δ15N discrimination values were +3.8?±?0.3?‰ and +6.3?±?0.7?‰ respectively; significantly greater than expected. Non-exchangeable δ2H feather values (?62.4?±?6.4?‰) were more negative than water (?26.1?±?2.5?‰) offered during feather growth. There was no positive relationship between the δ13C and δ15N values of the samples along each feather with the associated samples of food offered, or the feather non-exchangeable hydrogen isotope values with δ2H values of water, emphasising the complex processes involved in carbohydrate, protein, and income water routing to feather growth. Understanding the isotopic relationship between diet and feathers may provide greater clarity in the use of stable isotopes in feathers as a tool in determining origins of captive and wild-caught African grey parrots, a species that is widespread in aviculture and faces significant threats to wild populations. We suggest that these isotopic results, determined even in controlled laboratory conditions, be used with caution.  相似文献   

2.
Carbon isotopes of breath CO2 vary depending on diet and fuel substrate used. This study examined if exercise-induced δ13C-CO2 changes in substrate utilization were distinguishable from baseline δ13C-CO2 variations in a population with uncontrolled diet, and compared hair isotope values and food logs to develop an isotope model of diet. Study participants included nine women with diverse Body Mass Index (BMI), age, ancestry, exercise history, and diet. Breath samples were collected prior to and up to 12?h after a 5- or 10?K walk/run. Indirect calorimetry was measured with a smartphone-enabled mobile colorimetric device, and a field-deployable isotope analyzer measured breath δ13C-CO2 values. Diet was assessed by food logs and δ13C, δ15N of hair samples. Post-exercise δ13C-CO2 values increased by 0.54?±?1.09‰ (1 sd, n?=?9), implying enhanced carbohydrate burning, while early morning δ13C-CO2 values were lower than daily averages (p?=?0.0043), indicating lipid burning during overnight fasting. Although diurnal δ13C-CO2 variation (1.90?±?0.77‰) and participant baseline range (3.06‰) exceeded exercise-induced variation, temporal patterns distinguished exercise from dietary isotope effects. Hair δ13C and δ15N values were consistent with a new dietary isotope model. Notwithstanding the small number of participants, this study introduces a novel combination of techniques to directly monitor energy balance in free-living individuals.  相似文献   

3.
High and fluctuating salinity is characteristic for coastal salt marshes, which strongly affect the physiology of halophytes consequently resulting in changes in stable isotope distribution. The natural abundance of stable isotopes (δ13C and δ15N) of the halophyte plant Salicornia brachiata and physico-chemical characteristics of soils were analysed in order to investigate the relationship of stable isotope distribution in different populations in a growing period in the coastal area of Gujarat, India. Aboveground and belowground biomass of S. brachiata was collected from six different populations at five times (September 2014, November 2014, January 2015, March 2015 and May 2015). The δ13C values in aboveground (?30.8 to ?23.6?‰, average: ?26.6?±?0.4?‰) and belowground biomass (?30.0 to ?23.1?‰, average: ?26.3?±?0.4?‰) were similar. The δ13C values were positively correlated with soil salinity and Na concentration, and negatively correlated with soil mineral nitrogen. The δ15N values of aboveground (6.7–16.1?‰, average: 9.6?±?0.4?‰) were comparatively higher than belowground biomass (5.4–13.2?‰, average: 7.8?±?0.3?‰). The δ15N values were negatively correlated with soil available P. We conclude that the variation in δ13C values of S. brachiata was possibly caused by soil salinity (associated Na content) and N limitation which demonstrates the potential of δ13C as an indicator of stress in plants.  相似文献   

4.
Variations in the relative isotopic abundance of C and N (δ13C and δ15N) were measured during the composting of different agricultural wastes using bench-scale bioreactors. Different mixtures of agricultural wastes (horse bedding manure?+?legume residues; dairy manure?+?jatropha mill cake; dairy manure?+?sugarcane residues; dairy manure alone) were used for aerobic–thermophilic composting. No significant differences were found between the δ13C values of the feedstock and the final compost, except for dairy manure?+?sugarcane residues (from initial ratio of ?13.6?±?0.2?‰ to final ratio of ?14.4?±?0.2?‰). δ15N values increased significantly in composts of horse bedding manure?+?legumes residues (from initial ratio of +5.9?±?0.1?‰ to final ratio of +8.2?±?0.5?‰) and dairy manure?+?jatropha mill cake (from initial ratio of +9.5?±?0.2?‰ to final ratio of +12.8?±?0.7?‰) and was related to the total N loss (mass balance). δ13C can be used to differentiate composts from different feedstock (e.g. C3 or C4 sources). The quantitative relationship between N loss and δ15N variation should be determined.  相似文献   

5.
ABSTRACT

Particulate matter (PM) from atmospheric aerosols contains carbons that are harmful for living organisms and the environment. PM can originate from vehicle emissions, wearing of vehicle components, and dust. Size and composition determine PM transport and penetration depth into the respiratory system. Understanding PM emission characteristics is essential for developing strategies to improve air quality. The number of studies on carbon isotope composition (13C/12C) of PM samples to characterise emission factors has increased. The goal of this review is to integrate and interpret the findings from 13C/12C carbon isotope ratio (δ13C, ‰) analyses for the most common types of emission sources. The review integrates data from 25 studies in 13 countries. The range of δ13C of PM from vehicle emissions was from ?28.3 to ?24.5?‰ and for non-vehicle anthropogenic emissions from ?27.4 to ?23.3?‰. In contrast, PM ranges for δ13C from biomass burning sources differed markedly. For C3 plants, δ13C ranged from ?34.7 to ?25.4?‰ and for C4 plants from ?22.2 to ?13.0?‰. The 13C/12C isotope analysis of PM is valuable for understanding the sources of pollutants and distinguishing vehicle emissions from biomass burning. However, additional markers are needed to further distinguish other anthropogenic sources.  相似文献   

6.
Nitrate is a key component of synthetic fertilizers that can be beneficial to crop production in agro-ecosystems, but can also cause damage to natural ecosystems if it is exported in large amounts. Stable isotopes, both oxygen and nitrogen, have been used to trace the sources and fate of nitrate in various ecosystems. However, the oxygen isotope composition of synthetic and organic nitrates is poorly constrained. Here, we present a study on the N and O isotope composition of nitrate-based fertilizers. The δ15N values of synthetic and natural nitrates were 0?±?2?‰ similar to the air N2 from which they are derived. The δ18O values of synthetic nitrates were 23?±?3?‰, similar to air O2, and natural nitrate fertilizer δ18O values (55?±?5?‰) were similar to those observed in atmospheric nitrate. The Δ17O values of synthetic fertilizer nitrate were approximately zero following a mass-dependent isotope relationship, while natural nitrate fertilizers had Δ17O values of 18?±?2?‰ similar to nitrate produced photochemically in the atmosphere. These narrow ranges of values can be used to assess the amount of nitrate arising from fertilizers in mixed systems where more than one nitrate source exists (soil, rivers, and lakes) using simple isotope mixing models.  相似文献   

7.
δ13C and δ18O values from sapwood of a single Pinus uncinata tree, from a high elevation site in the Spanish Pyrenees, were determined to evaluate the differences between whole wood and resin-free whole wood. This issue is addressed for the first time with P. uncinata over a 38-year long period. Results are also compared with published isotope values of α-cellulose samples from the same tree. The differences in δ13C and δ18O between whole wood and resin-free whole wood vary within the analytical uncertainty of 0.3 and 0.5?‰, respectively, indicating that resin extraction is not necessary for sapwood of P. uncinata. Mean differences between cellulose and whole wood are 0.9?‰ (δ13C) and 5.0?‰ (δ18O), respectively. However, further analyses of different species and other sites are needed to evaluate whether the findings reported here are coherent more generally.  相似文献   

8.
On the Qinghai–Tibetan Plateau, isotopic signatures in soil–atmosphere CH4 fluxes were investigated in nine grasslands and three wetlands. In the grasslands, the fractionation factor for soil CH4 uptake, αsoil, was much smaller than the usually reported value of 0.9975–1.0095. Stepwise multiple variation analysis indicates that αsoil is higher for higher soil water contents but is lower for higher C/N ratios of soil surface biomass. In the three wetlands, the soil-emitted δ13C–CH4 was similar (?55.3?±?5.5?‰ and ?53.0?±?5.5?‰) in two bogs separated by >1000?km but was lower (?63.4?±?6.3?‰) in a marsh. Environmental factors related to intrasite variations in soil-emitted δ13C–CH4 include the soil C/N ratio, oxidation–reduction potential, soil C concentration and soil water contents. Geographical isotopic surveys revealed environmental constraints on the CH4 consumption pathways in grasslands and the biome type-specific consistency in CH4 production pathways in wetlands.  相似文献   

9.
The carbon isotope composition (δ13C, ‰) and discrimination (Δ, ‰) of old grown North American Pinus ponderosa Dougl. Ex P. et C. Laws. and European Pinus sylvestris L. were determined using trees grown under almost identical growing conditions in a mixed stand in Bralitz, Northeast Germany. Single-tree δ13C analyses of tree-ring cellulose of both species were carried out at a yearly resolution for the period 1901–2001 and the results compared with growth (basal area increment). Annual mean δ13C values for P. ponderosa ranged from?21.6 ‰ to?25.2 ‰ and for P. sylvestris from?21.4 ‰ to?24.4 ‰. Accordingly, 13C discrimination (Δ) showed higher values for P. ponderosa throughout the investigation period. Five characteristic periods of Δ were identified for both the tree species, reflecting positive and negative influences of environmental factors. Good growing conditions such as after-thinning events had a positive effect on Δ, reflecting higher values, while poor conditions like aridity and air pollution had a negative influence, reflecting lower values. The dynamics of Δ were likewise reflected in the growth (basal area increment, BAI). Higher 13C discrimination values of P. ponderosa led to higher BAIs of P. ponderosa in comparison with P. sylvestris. Correlation function analyses confirmed that P. sylvestris was more dependent on precipitation than P. ponderosa, which showed a closer relationship with temperature. The results confirm that under predominantly dry growing conditions, P. ponderosa showed better growth performance than P. sylvestris, indicating better common intrinsic water-use efficiency and, therefore, higher rates of net photosynthesis at a given transpiration. In view of the prospect of climate change, the results are very significant for assessing both trees’ physiological properties and, hence, their potential for coping with future growing conditions.  相似文献   

10.
Abstract

The stable isotope composition of hydrogen (δ2H) and oxygen (δ18O) in monthly precipitation and river water (Sava River and Danube) samples in the Belgrade area gathered between 1992 and 2005 are determined. The local meteoric water line δ2H=7.8 (±0.2) δ18O+7.3(±1.6) (r 2=0.98, n=60, σ=0.52) for the whole period of observation is close to the global meteoric water line. The amount-weighted mean δ2H and δ18O values of precipitation were?65±27 ‰ and?9.4±3.4 ‰, respectively. Good correlation between δ18O values (r>rsim0.67) and ambient temperature and relative humidity was obtained. Stream-water data ranged from?94 to?60 ‰ for δ2H and from?11.0 to ~5.7 ‰ for δ18O with highly statistically significant difference (p>0.01) between the Sava River and the Danube. In addition, the isotopic compositions of local precipitation and adjacent river water at monitoring sites were compared. Obtained data will give an opportunity to improve the knowledge of mixing stream water and local groundwater, and assessment of potential groundwater risks and pressures in the Belgrade basin.  相似文献   

11.
δ13C values of gaseous acetaldehyde were measured by gas chromatograph–combustion–isotope ratio mass spectrometer (GC–C–IRMS) via sodium bisulfite (NaHSO3) adsorption and cysteamine derivatisation. Gaseous acetaldehyde was collected via NaHSO3-coated Sep-Pak® silica gel cartridge, then derivatised with cysteamine, and then the δ13C value of the acetaldehyde–cysteamine derivative was measured by GC–C–IRMS. Using two acetaldehydes with different δ13C values, derivatisation experiments were carried out to cover concentrations between 0.009×10?3 and 1.96×10?3 mg·l?1) of atmospheric acetaldehyde, and then δ13C fractionation was evaluated in the derivatisation of acetaldehyde based on stoichiometric mass balance after measuring the δ13C values of acetaldehyde, cysteamine and the acetaldehyde–cysteamine derivative. δ13C measurements in the derivertisation process showed good reproducibility (<0.5 ‰) for gaseous acetaldehyde. The differences between predicted and measured δ13C values were 0.04–0.31 ‰ for acetaldehyde–cysteamine derivative, indicating that the derivatisation introduces no isotope fractionation for gaseous acetaldehyde, and obtained δ13C values of acetaldehyde in ambient air at the two sites were distinct (?34.00 ‰ at an urban site versus?31.00 ‰ at a forest site), implying potential application of the method to study atmospheric acetaldehyde.  相似文献   

12.
Abstract

Stable isotope (13C, 18O, 34S) and trace element (Sr2+, Mg2+, Mn2+, Ba2+, Na+) investigations of elemental sulfur, primary calcites and mixtures of aragonite with secondary, post-aragonitic calcite from sulfur-bearing limestones have provided new insights into the geochemistry of the mineral forming environment of the native sulfur deposit at Machów (SE-Poland). The carbon isotopic composition of carbonates (δ13C = ?41 to ?47‰ vs. PDB) associated with native sulfur (δ34S = + 10 to + 15‰ vs. V-CDT) relates their formation to the microbiological anaerobic oxidation of methane and the reduction of sulfate derived from Miocene gypsum. From a comparison with experimentally derived fractionation factors the element ratios of the aqueous fluids responsible for carbonate formation are estimated. In agreement with field and laboratory observations, ratios near seawater composition are obtained for primary aragonite, whereas the fluids were relatively enriched in dissolved calcium during the formation of primary and secondary calcites. Based on the oxygen isotope composition of the carbonates (δ18O = ?3.9 to ?5.9‰ vs. PDB) and a secondary SrSO418O = + 20‰ vs. SMOW; δ34S = + 59‰ vs. V-CDT), maximum formation temperatures of 35°C (carbonates) and 47°C (celestite) are obtained, in agreement with estimates for West Ukraine sulfur ores. The sulfur isotopic composition of elemental sulfur associated with carbonates points to intense microbial reduction of sulfate derived from Miocene gypsum (δ34S ≈ + 23‰) prior to the re-oxidation of dissolved reduced sulfur species.  相似文献   

13.
For certain remote areas like Mongolia, field-based precipitation, surface and ground water isotopic data are scarce. So far no such data exist for the Mongolian Gobi desert, which hinders the understanding of isotopic fractionation processes in this extreme, arid region. We collected 26 event-based precipitation samples, 39 Bij river samples, and 75 samples from other water bodies in the Dzungarian Gobi in SW Mongolia over a period of 16 months for hydrogen and oxygen stable isotope analysis. δ2H and δ18O values in precipitation show high seasonal variation and cover an extreme range: 175?‰ for δ2H and 24?‰ for δ18O values. The calculated local meteoric water line (LMWL) shows the isotopic characteristics of precipitation in an arid region. Individual water samples fall into one of three groups: within, above or below the 95?% confidence interval of LMWL. Data presented provide a basis for future studies in this region.  相似文献   

14.
We report chlorine stable isotopic compositions (δ37Cl, expressed in ‰ relative to the standard mean ocean chloride) as well as δ2H and δ18O values of deep saline fluids taken at eight drill-holes reaching from 73 to 780?m below sea level in the Ibusuki coastal geothermal region, Japan. Analytical results show that the δ37Cl values narrowly range between ?0.26 and +0.21?‰ with an analytical precision of ±0.06?‰. Except for one sample, the samples examined are negative in δ37Cl value with varying Cl/B molar ratios from 117 to 1265. A correlation study between the Cl/B molar ratio and the δ37Cl/δ11B ratio indicates a hyperbola-type mixing of at least two Cl sources in the Ibusuki region. One of them depletes in 37Cl with a higher value of Cl/B molar ratio; and the other one enriches in 37Cl with a lower Cl/B molar ratio. The former is chemically identical to that of the deep brine, which is altered seawater through the seawater–hot rock interaction. The latter is chemically similar to gas condensate derived from the high-temperature (890?°C) vent of an island-arc volcano near the Ibusuki region.  相似文献   

15.
This study combines stable isotopes and chemical elements with statistical principal component analysis (PCA) to assess the authenticity of bottled commercial drinking water desalinized from deep seawater in the Taiwan market. Isotopic results indicate that true bottled deep-sea drinking water (DSDW) exhibits about 0?‰ for both δ2H and δ18O values, which are values similar to those of open seawater. By comparison, suspected counterfeit DSDW products display δ2H and δ18O values of around ?51?‰ and ?8?‰, respectively. These values are representative of terrestrial freshwater. In addition, suspected counterfeit DSDWs have δ and electrical conductivity values similar to a mixed water (MW) product that was manufactured by purifying terrestrial freshwater and adulterating this with small amounts of brine. Furthermore, PCA results indicate the chemical constitution of suspected DSDW products to be similar to the MW product which falls between purified terrestrial freshwater and desalinized open seawater. These similarities imply that suspected counterfeit DSDW products are manufactured in a similar manner to the declared MW product. This study demonstrates how combining knowledge of stable water isotopes and PCA can be used in assessing the authenticity of commercial DSDW products. The method should be of great interest to similar investigations elsewhere.  相似文献   

16.
This work examines the performance and limitations of a wet chemical oxidation carbon analyser interfaced with a cavity ring-down spectrometer (WCO-CRDS) in a continuous flow (CF) configuration for measuring δ13C of dissolved organic carbon (δ13C-DOC) in natural water samples. Low-chloride matrix (<5?g Cl/L) DOC solutions were analysed with as little as 2.5?mg C/L in a 9?mL aliquot with a precision of 0.5?‰. In high-chloride matrix (10–100?g Cl/L) DOC solutions, bias towards lighter δ13C-DOC was observed because of incomplete oxidation despite using high-concentration oxidant, extended reaction time, or post-wet chemical oxidation gas-phase combustion. However, through a combination of dilution, chloride removal, and increasing the oxidant:sample ratio, high-salinity samples with sufficient DOC (>22.5?µg C/aliquot) may be analysed. The WCO-CRDS approach requires more total carbon (µg C/aliquot) than conventional CF-isotope ratio mass spectrometer, but is nonetheless applicable to a wide range of DOC concentration and water types, including brackish water, produced water, and basinal brines.  相似文献   

17.
The Tanour spring is one of the several karst springs located in the northern part of Jordan. Water samples from the Tanour spring and precipitation were collected in the area of Ajloun in NW Jordan for the analysis of stable oxygen and hydrogen isotopes to evaluate the spring response to precipitation events. Rainwater and snow samples were collected from different elevations during winters of 2013–2014 and 2014–2015. In addition, spring samples were collected between December 2014 and March 2015. δ18O values in rainwater vary from ?3.26 to ?17.34?‰ (average: ?7.84?±?3.23?‰), while δ2H values range between ?4.4 and ?110.4?‰ (average: ?35.7?±?25.0?‰). Deuterium excess ranges from 17.8 to 34.1?‰ (average: 27.1?±?4.0?‰). The Local Meteoric Water Line for the study area was calculated to be δ2H?=?7.66*δ18O?+?24.43 (R2?=?0.98). Pre-event spring discharge showed variation in δ18O (range ?6.29 to ?7.17?‰; average ?6.58?±?0.19?‰) and δ2H values (range ?28.8 to ?32.7?‰; average: ?30.5?±?1.0?‰). In contrast, δ18O and δ2H rapidly changed to more negative values during rainfall and snowmelt events and persisted for several days before returning to background values. Spring water temperature, spring discharge, and turbidity followed the trend in isotopic composition during and after the precipitation events. The rapid change in the isotopic composition, spring discharge, water temperature, and turbidity in response to recharge events is related to fast water travel times and low storage capacity in the conduit system of the karst aquifer. Based on the changes in the isotopic composition of spring water after the precipitation events, the water travel time in the aquifer is in the order of 5–11 days.  相似文献   

18.
ABSTRACT

Inspired by a previous ‘Sauna, sweat and science’ study [Zech et al. Isot Environ Health Stud. 2015;51(3):439–447] and out of curiosity and enthusiasm for stable isotope and sauna research we aimed at answering the question ‘do we sweat (isotopically) what we drink’? We, therefore, pulse-labelled five test persons in a sauna experiment with beverages that were 2H-enriched at about +25,600?‰. Sweat samples were collected during six sauna rounds and the hydrogen isotope composition δ2Hsweat was determined using an isotope ratio mass spectrometer. Before pulse labelling, δ2Hsweat – reflecting by approximation body water – ranged from –32 to –22?‰. This is ~35?‰ enriched compared to usual mid-European drinking water and can be explained with hydrogen-bearing food as well as with the respiratory loss of 2H-depleted vapour. The absence of a clearly detectable 2H pulse in sweat after pulse labelling and δ2Hsweat results of ≤+250?‰ due to a fast 2H equilibration with body water are moreover a clearly negative answer to our research question also in a short-term consideration. Given that the recovery of the tracer based on an isotope mass balance calculation is clearly below 100?%, we finally answer the question ‘where did the rest of the tracer go?’  相似文献   

19.
ABSTRACT

We studied natural and forestry-drained peatlands to examine the effect of over 34 years lowered water table on the δ13C values of vegetation, bulk peat and subsoil. In the seven studied sites, δ13C in the basal peat layer was 1.1 and 1.2?‰ lower than that of the middle-layer and surface layer, respectively. Furthermore, there was a positive correlation between the δ13C values of the basal and surface peat layers, possibly due to carbon (C) recycling within the peat column. In the same mire complex, natural fen peat δ13C values were lower than those of the nearby bog, possibly due to the dominance of vascular plants on fen and the generally larger share of recycled C in the fens than in the bogs. Furthermore, natural and 51 years previously drained fen and bog, on the opposite sides of a ditch on the same mire complex, showed no significant differences in δ13C values. Plant δ13C values were lower, while δ13C values of subsoil were higher in the drained than in the natural site of the fen.  相似文献   

20.
Secondary carbonate precipitates (dripstones) formed on concrete surfaces in four different environments – Mediterranean and continental open-space and indoor environments (inside a building and in a karstic cave) – were studied. The fabric of dripstones depends upon water supply, pH of mother solution and carbonate-resulting precipitation rate. Very low δ13C (average?28.2‰) and δ18O (average?18.4‰) values showed a strong positive correlation, typical for carbonate precipitated by rapid dissolution of CO2 in a highly alkaline solution and consequent disequilibrium precipitation of CaCO3. The main source of carbon is atmospheric or biogenic CO2 in the poorly ventilated karstic cave, which is reflected in even lower δ13C values. Statistical analysis of δ13C and δ18O values of the four groups of samples showed that the governing factor of isotope fractionation is not the temperature, but rather the precipitation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号