首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of electrospray ionization (ESI) mass spectrometry (MS) to detect non-covalent protein complexes has been demonstrated repeatedly. However, questions about correlation of the solution and gas-phase structures of these complexes still produce vigorous scientific discussion. Here, we demonstrate the evaluation of the gas-phase binding of non-covalent protein complexes formed between bovine pancreatic trypsin inhibitor (BPTI) and its target enzymes over a wide range of dissociation constants. Non-covalent protein complexes were detected by ESI-MS. The abundance of the complex ions in the mass spectra is less than expected from the values of the dissociation constants of the complexes in solution. Collisionally activated dissociation (CAD) tandem mass spectrometry (MS/MS) and a collision model for ion activation were used to evaluate the binding of non-covalent complexes in the gas phase. The internal energy required to induce dissociation was calculated for three collision gases (Ne, Ar, Kr) over a wide range of collision gas pressures and energies using an electrospray ionization source. The order of binding energies of the gas-phase ions for non-covalent protein complexes formed by the ESI source and assessed using CAD-MS/MS appears to differ from that of the solution complexes. The implication is that solution structure of these complexes was not preserved in the gas phase.  相似文献   

2.
Mass spectrometry (MS) with electrospray ionization (ESI) has the capability to measure and detect noncovalent protein-ligand and protein-protein complexes. However, information on the sites of ligand binding is not easily obtained by the ESI-MS methodology. Electron capture dissociation (ECD) favors cleavage of covalent backbone bonds of protein molecules. We show that this characteristic of ECD translates to noncovalent protein-ligand complexes, as covalent backbone bonds of protein complexes are dissociated, but the noncovalent ligand interaction is retained. For the complex formed from 140-residue, 14.5 kDa alpha-synuclein protein, and one molecule of polycationic spermine (202 Da), ECD generates product ions that retain the protein-spermine noncovalent interaction. Spermine binding is localized to residues 106-138; the ECD data are consistent with previous solution NMR studies. Our studies suggest that ECD mass spectrometry can be used to determine directly the sites of ligand binding to protein targets.  相似文献   

3.
The fixed-ligand version of the kinetic method has been used for chiral and for isomeric analysis by studying the dissociation kinetics of transition metal-bound trimeric cluster ions ([(M(II) + L(fixed)-H)(ref*)(An)](+), where M(II) is a transition metal, L fixed is a fixed (non-dissociating) ligand, ref* is a reference ligand and An is the analyte. The trimeric cluster ions are readily generated by electrospray ionization (ESI) or sonic spray ionization (SSI). The size of the fixed ligand, L- Phe-Gly-L-P he-Gly, is chosen based on previous results but with the inclusion of aromatic functionality to increase chiral recognition. Improved chiral/isomeric differentiation results from enhanced chiral/isomeric interactions (metal-ligand and ligand-ligand) due to the fixed ligand. As shown in the cases of chiral dipeptides (D-Ala-D-Ala/L-Ala-L-Ala), sugars (D/L-glucose, D/L-mannose) and isomeric tetrapeptides (L-Ala-Gly-Gly-Gly/Gly-Gly -Gly-L-Ala), improved chiral/isomeric discrimination by factors from three to six were obtained by the fixed ligand procedure. Chiral recognition is independent of the concentrations of the analyte, the reference ligand, the fixed ligand and the transition metal salt, a great advantage for practical applications. In addition to increased chiral distinction, the simplified dissociation kinetics also contribute to improved accuracy in chiral quantification, in comparison with data obtained by investigating the dissociation kinetics of simple trimeric cluster ions [M(II)(ref*)2(An) H](+). Accurate determination of enantiomeric excess (ee) is demonstrated by enantiomeric quantification of D-Ala-D-Ala/L-Ala-L-Ala down to 2% ee. Both ESI and SSI allow chiral quantification with similar accuracies. The performance of chiral analysis experiments is not limited to ion trapping devices such as quadrupole ion trap mass spectrometers by a hybrid quadrupole-time of flight (Q-ToF) mass spectrometer is shown to provide an alternative choice. The fixed-ligand kinetic method is not restricted to any particular kinds of isomers and, hence, represents a general procedure for improving molecular recognition and chiral analysis in the gas phase.  相似文献   

4.
The origin of the extent of charging and the mechanism by which multiply charged ions are formed in electrospray ionization have been hotly debated for over a decade. Many factors can affect the number of charges on an analyte ion. Here, we investigate the extent of charging of poly(propyleneimine) dendrimers (generations 3.0 and 5.0), cytochrome c, poly(ethylene glycol)s, and 1,n-diaminoalkanes formed from solutions of different composition. We demonstrate that in the absence of other factors, the surface tension of the electrospray droplet late in the desolvation process is a significant factor in determining the overall analyte charge. For poly(ethylene glycol)s, 1,n-diaminoalkanes, and poly(propyleneimine) dendrimers electrosprayed from single-component solutions, there is a clear relationship between the analyte charge and the solvent surface tension. Addition of m-nitrobenzyl alcohol (m-NBA) into electrospray solutions increases the charging when the original solution has a lower surface tension than m-NBA, but the degree of charging decreases when this compound is added to water, which has a higher surface tension. Similarly, the charging of cytochrome c ions formed from acidified denaturing solutions generally increases with increasing surface tension of the least volatile solvent. For the dendrimers investigated, there is a strong correlation between the average charge state of the dendrimer and the Rayleigh limiting charge calculated for a droplet of the same size as the analyte molecule and with the surface tension of the electrospray solvent. A bimodal charge distribution is observed for larger dendrimers formed from water/m-NBA solutions, suggesting the presence of more than one conformation in solution. A similar correlation is found between the extent of charging for 1,n-diaminoalkanes and the calculated Rayleigh limiting charge. These results provide strong evidence that multiply charged organic ions are formed by the charged residue mechanism. A significantly smaller extent of charging for both dendrimers and 1,n-diaminoalkanes would be expected if the ion evaporation mechanism played a significant role.  相似文献   

5.
Proteins possess an intimate relationship between their structure and function, with folded protein structures generating recognition motifs for the binding of ligands and other proteins. Mass spectrometry (MS) can provide information on a number of levels of protein structure, from the primary amino acid sequence to its three‐dimensional fold and quaternary interactions. Given that MS is a gas‐phase technique, with its foundations in analytical chemistry, it is perhaps counter‐intuitive to use it to study the structure and non‐covalent interactions of proteins that form in solution. Herein we show, however, that MS can go beyond simply preserving protein interactions in the gas phase by providing new insight into dynamic interaction networks, dissociation mechanisms, and the cooperativity of ligand binding. We consider potential pitfalls in data interpretation and place particular emphasis on recent studies that revealed quantitative information about dynamic protein interactions, in both soluble and membrane‐embedded assemblies.  相似文献   

6.
Liquid chromatography/tandem mass spectrometry (LC/MS/MS) based on selected reaction monitoring (SRM) is the standard methodology in quantitative analysis of administered xenobiotics in biological samples. Utilizing two SRM channels during positive electrospray ionization (ESI) LC/MS/MS method development for a drug compound containing two basic functional groups, we found that the response ratio (SRM1/SRM2) obtained using an acidic mobile phase was dramatically different from that obtained using a basic mobile phase. This observation is different from the well-established phenomenon of mobile phase affecting the [M+H](+) response, which is directly related to the amount of the [M+H](+) ions produced during the ionization. Results from follow-up work reported herein revealed that the MS/MS fragmentation patterns of four drug or drug-like compounds are affected not only by the pH, but also by the aqueous-organic ratio of the mobile phase and the buffer concentration at a given apparent pH. The observed phenomenon can be explained by invoking that a mixture of [M+H](+) ions of the same m/z value for the analyte is produced that is composed of two or more species which differ only in the site of the proton attachment, which in turn affects their MS/MS fragmentation pattern. The ratio of the different protonated species changes depending on the pH, aqueous-organic ratio, or ionic strength of the mobile phase used. The awareness of the mobile phase dependency of the MS/MS fragmentation pattern of precursor ions of identical m/z value will influence LC/MS/MS-based bioanalytical method development strategies. Specifically, we are recommending that multiple SRM transitions be monitored during mobile phase screening, with the MS/MS parameters used for each SRM optimized for the composition of the mobile phase (pH, organic percentage, and ionic strength) in which the analyte elutes.  相似文献   

7.
The charge states of biomolecular ions in ESI-MS can be significantly increased by the addition of low-vapor supercharging (SC) reagents into the spraying solution. Despite the considerable interest from the community, the mechanistic aspects of SC are not well understood and are hotly debated. Arguments that denaturation accounts for the increased charging observed in proteins sprayed from aqueous solutions containing SC reagent have been published widely, but often with incomplete or ambiguous supporting data. In this work, we explored ESI MS charging and SC behavior of several biopolymers including proteins and DNA oligonucleotides. Analytes were ionized from 100 mM ammonium acetate (NH4Ac) aqueous buffer in both positive (ESI+) and negative (ESI–) ion modes. SC was induced either with m-NBA or by the elevated temperature of ESI capillary. For all the analytes studied we, found striking differences in the ESI MS response to these two modes of activation. The data suggest that activation with m-NBA results in more extensive analyte charging with lower degree of denaturation. When working solution with m-NBA was analyzed at elevated temperatures, the SC effect from m-NBA was neutralized. Instead, the net SC effect was similar to the SC effect achieved by thermal activation only. Overall, our observations indicate that SC reagents enhance ESI charging of biomolecules via distinctly different mechanism compared with the traditional approaches based on analyte denaturation. Instead, the data support the hypothesis that the SC phenomenon involves a direct interaction between a biopolymer and SC reagent occurring in evaporating ESI droplets.
Fig. a
?  相似文献   

8.
Dissociation of gas-phase protonated protein dimers into their constituent monomers can result in either symmetric or asymmetric charge partitioning. Dissociation of alpha-lactalbumin homodimers with 15+ charges results in a symmetric, but broad, distribution of protein monomers with charge states centered around 8+/7+. In contrast, dissociation of the 15+ heterodimer consisting of one molecule in the oxidized form and one in the reduced form results in highly asymmetric charge partitioning in which the reduced species carries away predominantly 11+ charges, and the oxidized molecule carries away 4+ charges. This result cannot be adequately explained by differential charging occurring either in solution or in the electrospray process, but appears to be best explained by the reduced species unfolding upon activation in the gas phase with subsequent separation and proton transfer to the unfolding species in the dissociation complex to minimize Coulomb repulsion. For dimers of cytochrome c formed directly from solution, the 17+ charge state undergoes symmetric charge partitioning whereas dissociation of the 13+ is asymmetric. Reduction of the charge state of dimers with 17+ charges to 13+ via gas-phase proton transfer and subsequent dissociation of the mass selected 13+ ions results in a symmetric charge partitioning. This result clearly shows that the structure of the dimer ions with 13+ charges depends on the method of ion formation and that the structural difference is responsible for the symmetric versus asymmetric charge partitioning observed. This indicates that the asymmetry observed when these ions are formed directly from solution must come about due either to differences in the monomer conformations in the dimer that exist in solution or that occur during the electrospray ionization process. These results provide additional evidence for the origin of charge asymmetry that occurs in the dissociation of multiply charged protein complexes and indicate that some solution-phase information can be obtained from these gas-phase dissociation experiments.  相似文献   

9.
A tunable ESI-MS/MS strategy for differentiation of flavone and flavanone diglycoside isomers based on metal complexation with auxiliary ligands is reported. The addition of a metal salt and an auxiliary ligand to a flavonoid solution results in the formation of [M(II) (flavonoid-H) auxiliary ligand](+) complexes, where M(II) is a transition metal. A series of auxiliary ligands with electron-withdrawing substituents were synthesized to tailor the relative metal binding affinities of the ligands and thus directly influence the stabilities, and consequently the dissociation pathways, of the complexes. Upon collisionally activated dissociation, the complexes yield fragmentation patterns in which the abundances of key diagnostic ions are enhanced, thus facilitating isomer differentiation.  相似文献   

10.
Analytical Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA Ion-molecule reactions of neutral methane with analyte ions under normal methane chemical ionization conditions are discussed. Reactant ions can be generated by direct electron ionization (EI) fragmentation, chemical ionization (CI) fragmentation, or collision-induced dissociation (CID). Examples in which products of such reactions appear in mass spectra in both conventional CI sources in “beam” instruments and low pressure CI in a quadrupole ion trap are presented. Also shown is an example in which MS/MS product ions react with neutral methane used for CI in an ion trap. It is shown that it is relatively straightforward to recognize such reactions in a quadrupole ion trap and in certain cases to minimize or preclude them. Effects of various operating parameters have been investigated and are discussed.  相似文献   

11.
Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA The effect of solvent composition on negative ion electrospray ionization (ESI) mass spectrometry was examined. The onset potentials for ES1 of a series of chlorinated solvents and methanol were found to be within the range predicted by D. P. H. Smith, based on differences in the surface tension of the solvents used. The tendency toward electric discharge decreased with increasing percent weight of chlorine in the solvent. This effect has been attributed to an increasing propensity for electron capture for more highly chlorinated solvents. Addition of the electron scavenger gas SF, was even more effective at suppressing corona discharge phenomena. In a comparison of ultimate signal intensity obtainable for a test analyte in 10% methanol, the highest signal, which was stable over the widest range of temperatures, was exhibited by chloroform compared to dichloromethane, 1,2-dichloroethane, carbon tetrachloride, and methanol (100%). Chloroform, thus, is a recommended solvent for negative ion electrospray mass spectrometry (ES/MS) when solubility is not a limiting issue. Solvent polarity was shown to exhibit a profound influence on the distribution of charge states in negative ion ES/MS. For both chlorinated and nonchlorinated organic solvents, the higher the solution dielectric constant, the more the charge-state distribution is shifted toward higher charge states. These observations build on the “electrophoretic” mechanism of droplet charging. Solvents with high solution dielectric constants are considered to be most effective at stabilizing multiply charged ions (where charge separation is greatest), and they are likely to increase the level of droplet charging. Solvents with high basicities (gas phase and solution phase) and high proton affinities, yet low dielectric constants, favor lower charge states in ES mass spectra of lipid A and cardiolipin from Escherichia coli. This indicates that gas-phase processes and solvent basicity contribute much less toward ion formation than solution-phase solvation via preferred orientation of the solvent dipole.  相似文献   

12.
Electrospray ionization (ESI) mechanisms are highly complex, due to a series of physical and chemical phenomena taking place on a complex system, as a solution is. In fact, even if the solution of an analyte in a protic medium can be considered at first sight to be a two-component system, the presence of solvent dissociation equilibria and the possible interactions solvent-solvent dissociation products, solvent dissociation products-analyte make this system highly complex, also for the presence of possible ionic compounds (for example, Na(+), K(+)) which strongly affect the above equilibria. A high number of research articles have been published, mainly devoted to charged droplet production and to gas-phase ion generation. They all show the high complexity of the processes affecting electrospray measurements related to either the chemical equilibria present in the condensed phase and to electrolysis processes at the emitter tip or to the processes occurring in the sprayed droplets. As a result, the chemical composition inside the small droplets from which the analyte ions are generated can be significantly different from those in sprayed solution. In this review, after a short survey of the proposed ESI mechanisms, some experiments are described. They were performed to examine if ion mobility in solution, before the formation of the sprayed charged droplets, can affect the ESI results. The data, obtained by studying both inorganic and organic analytes, indicate that the ESI spectra are dependent on the analyte dimension and charge state which, as a consequence, affect their ion mobility in solution.  相似文献   

13.
The determination of tetra- to octachlorodibenzo-p-dioxins and tetra- to octachlorodibenzofurans (PCCD/Fs) by high-resolution gas chromatography/tandem mass spectrometry (HRGC/MS/MS) and high-resolution gas chromatography/triple mass spectrometry (HRGC/MS(3)) in a quadrupole ion trap, equipped with an external ion source, is presented. MS/MS involves a typical four-step process, namely ionization, parent ion isolation, collision-induced dissociation (CID) and mass analysis of the daughter ions. For the MS(3) experiment, the MS/MS scan function is used with the addition of selected daughter ion isolation, their CID and the mass analysis of second-generation product ions called 'grand-daughter ions.' For both methods, the energies necessary for the CID of the 17 PCDD/Fs were determined and optimized using multiple scan functions with different CID amplitudes. The CID efficiency, defined as the signal ratio of fragment ions detected from the major dissociation channels to molecular ions isolated, was 1.15-2.40 V for parent ion dissociation (MS/MS) and 1.05-1.50 V for daughter ion dissociation (MS(3)) and for all the chloro congeners. The same sensitivity (1 pg microl(-1)) can be reached with both the MS/MS and MS(3) methods and linear responses were obtained between 1 and 100 pg microl(-1) injected.  相似文献   

14.
An improved method to interpret triple quadrupole MS/MS experiments of complexes of large ions is presented and applied to a study of the complex formed by the proteins cytochrome c and cytochrome b5. Modeling of the activation and dissociation process shows that most of the reaction occurs near the collision cell exit where ions have the highest internal energies. Experiments at different collision cell pressures or with different collision gases (Ne, Ar, Kr) are interpreted with a previously proposed collision model (Chen et al., Rapid Commun. Mass Spectrom. 1998, 12, 1003-1010) to calculate the internal energy added to ions to cause dissociation. Small but systematic differences under different experimental conditions are attributed to different times available for reaction. A method to correct for this is presented. Ne, Ar, and Kr are found to have similar energy transfer efficiencies. Complexes of cytochrome c and cytochrome b5 are detected in ESI mass spectra but with abundances less than expected from the solution equilibrium. Dissociation of the cytochrome c-cytochrome b5 complexes with charge k gives as the most abundant fragments, cytochrome b5(+3) and cytochrome c+(k-3). Adding charges to the complex destabilizes it. A series of cytochrome c variants with Lys residues thought to be involved in solution binding replaced by Ala showed no differences in the energy required to induce dissociation of the gas phase complex. The implications for the binding of the gas phase ions are inconclusive.  相似文献   

15.
Atmospheric pressure matrix-assisted laser desorption/ionisation quadrupole ion trap (AP-MALDI/QIT) mass spectrometry has been investigated for the analysis of polyethylene glycol (PEG 1500) and a hyperbranched polymer (polyglycidol) in the presence of alkali-metal salts. Mass spectra of PEG 1500 obtained at atmospheric pressure showed dimetallated matrix/analyte adducts, in addition to the expected alkali-metal/PEG ions, for all matrix/alkali-metal salt combinations. The relative intensities of the desorbed ions were dependent on the matrix, the alkali-metal salt added to aid cationisation and the ion trap interface conditions [capillary temperature, in-source collisionally-induced dissociation (CID)]. These data indicate that the adducts are rapidly stabilised by collisional cooling enabling them to be transferred into the ion trap. Experiments using identical sample preparation conditions were carried out on a vacuum MALDI time-of-flight (ToF) mass spectrometer. In all cases, vacuum MALDI-ToF spectra showed only alkali-metal/PEG ions and no matrix/analyte adducts. The tandem mass spectrometry (MS/MS) capability of the ion trap has been demonstrated for a lithiated polyglycol yielding a rich fragment-ion spectrum. Analysis of the hyperbranched polymer polyglycidol by AP-MALDI/QIT reveals the characteristic ion series for these polymers as also observed under vacuum MALDI-ToF conditions.  相似文献   

16.
The electron impact (EI) mass spectrum of allyl phenyl ether (1) includes an ion at m/z 106 that is formed mainly by the loss of CO from the molecular ion, as supported by high resolution and MS/MS data. The formation of the [M - CO](+) ion from 1 can be explained in terms of the Claisen rearrangement of 1 after ionization in the ion source of the mass spectrometer. Similarly, allyl phenyl sulfide (2) and allyl phenyl selenide (3) showed characteristic ions corresponding to [M - CH(3)](+), [M - XH](+) (X = S or Se) and [M - C(2)H(4)](+.), and the formation of these ions are explained via Claisen rearrangement of 2 and 3 in the ion source of the mass spectrometer resulting in a mixture of rearrangement products. The formation of molecular ions of 2-allyl thiophenol and 2-allyl selenophenol as intermediates, that cannot be isolated as the neutrals from the solution phase Claisen rearrangement of 2 and 3, respectively, is clearly indicated in the gas phase. The mass spectra of the rearrangement products obtained from the solution phase reaction were also consistent with the proposal of formation of these products in the ion source of the mass spectrometer. The formation of characteristic fragment ions attributed to the Claisen rearrangement products are also evident in the collision induced dissociation spectra of the corresponding molecular ions. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

17.
The properties of noncovalent complexes of the enzyme exo-1,4-β-D-glycanase (“Cex”) with three aza-sugar inhibitors, deoxynojirimycin (X2DNJ), isofagomine lactam (X2IL), and isofagomine (X2IF), have been studied with solution and gas-phase hydrogen deuterium exchange (H/Dx) and measurements of collision cross sections of gas-phase ions. In solution, complexes have lower H/Dx levels than free Cex because binding the inhibitors blocks some sites from H/Dx and reduces fluctuations of the protein. In mass spectra of complexes, abundant Cex ions are seen, which mostly are formed by dissociation of complexes in the ion sampling interface. Both complex ions and Cex ions formed from a solution containing complexes have lower cross sections than Cex ions from a solution of Cex alone. This suggests the Cex ions formed by dissociation “remember” their solution conformations. For a given charge, ions of the complexes have greater gas-phase H/Dx levels than ions of Cex. Unlike cross sections, H/Dx levels of the complexes do not correlate with the relative gas-phase binding strengths measured by MS/MS. Cex ions from solutions with or without inhibitors, which have different cross sections, show the same H/Dx level after 15 s, indicating the ions may fold or unfold on the seconds time scale of the H/Dx experiment. Thus, cross sections show that complexes have more compact conformations than free protein ions on the time scale of ca. 1 ms. The gas-phase H/Dx measurements show that at least some complexes retain different conformations from the Cex ions on a time scale of seconds.  相似文献   

18.
Two model peptides, des-Arg1-bradykinin (DAB) and bradykinin (B), were cationized by Ag+ after their separation by reversed-phase liquid chromatography (RPLC) prior to mass spectrometry (MS). Silver nitrate solution was used as a post-column reagent. The RPLC and MS experimental conditions were optimized using flow injection in order to obtain sufficiently abundant silver adducts to permit MS/MS experiments. The use of water-methanol with 0.1% formic acid as mobile phase allowed a good chromatographic separation of the two peptides with a polymeric stationary phase and sufficiently abundant silver-containing adducts, [M + Ag + H]2+ and [M + 2Ag]2+. The gas-phase dissociation of [DAB + Ag + H]2+ and [DAB + 2Ag]2+ led to interpretable mass spectra during the on-line cationization experiment. Most of the ions obtained by dissociating [DAB + Ag + H]2+ and [DAB + 2Ag]2+ species are silver-containing ions but the ions produced depend on the parent. The ions coming from the dissociation of the doubly charged silver adducts [DAB + Ag + H]2+ or [DAB + 2Ag]2+ are of interest compared with those coming from the singly charged silver species or doubly charged protonated species. The fragmentation of the doubly charged silver adducts provides ions over the entire mass range. Although the presence of several prolines in des-Arg1-bradykinin prevents the formation of some expected ions, the observation of triplets [an-H + Ag]+, [bn-H + Ag]+ and [bn + OH + Ag]+ produced by the dissociation of on-line Ag(+)-cationized peptides could contribute to greater success of automatic sequencing of peptides.  相似文献   

19.
Electron-transfer dissociation (ETD) is evaluated as a technique to provide local information on higher order structure and dynamics of a whole protein molecule. Isotopic labeling of highly flexible segments of a model 18 kDa protein is carried out in solution under mildly denaturing conditions by means of hydrogen/deuterium exchange (HDX), followed by transfer of intact protein ions to the gas phase by means of electrospray ionization, and mass-selection of a precursor ion for subsequent reactions with fluoranthene radical anions. The ETD process gives rise to abundant fragment ions, whose deuterium content can be measured as a function of duration of the HDX reaction in solution. No backbone protection is detected for all protein segments spanning the 25-residue long N-terminal part of the protein, which is known to lack structure in solution. At the same time, noticeable protection is evident for segments representing the structured regions of the protein. The results of this work suggest that ETD of intact protein ions is not accompanied by detectable hydrogen scrambling and can be used in tandem with HDX to probe protein conformation in solution.  相似文献   

20.
In the matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI TOF MS) analysis of some quaternary ammonium salts (QASs), very clean spectra of the quaternary ammonium ions were recorded with a strong matrix suppression effect (MSE). The QASs also showed a considerable analyte suppression effect (ASE). It was demonstrated that the MSE and ASE of the QASs can be explained well by the cluster ionization model. According to this model, MALDI ions are formed from charged matrix/analyte clusters. Various analyte ions and matrix ions might coexist in the cluster, and they will compete for the limited number of net charges available. If enough quaternary ammonium ions are present in the cluster, they will take away the net charges, thus resulting in the MSE and ASE. Our results also suggest that ‘the cluster ionization model’ is not in conflict with ‘the theory of ionization via secondary gas‐phase reactions’. The initial MALDI ions produced from charged matrix/analyte clusters will collide with other molecules or ions in the MALDI plume. Depending on the properties of the initial ions and the composition of the MALDI plume, secondary gas‐phase reactions might result from these collisions. The final ions observed are the combined results of ‘cluster ionization’ and ‘ionization via secondary gas‐phase reactions’. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号