首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
利用工艺简单,成本低廉的共沉淀法制得CoOOH,并用作非水性锂-氧气电池阴极催化剂。通过恒流充放电、线性伏安扫描(LSV)和电化学阻抗(EIS)测试研究了电极的电化学性能。结果表明:由于CoOOH能够明显提高氧气还原反应(ORR)的催化活性,与未使用CoOOH的电极相比较,使用CoOOH为催化剂的电极首次放电容量高达5 093 mAh·g-1,提高了1.7倍。电池的充电过电压降低了约460 mV,充电可逆性得到增强,充放电可逆性提高,使得循环性能得到显著改善。  相似文献   

2.
利用工艺简单,成本低廉的共沉淀法制得Co OOH,并用作非水性锂-氧气电池阴极催化剂。通过恒流充放电、线性伏安扫描(LSV)和电化学阻抗(EIS)测试研究了电极的电化学性能。结果表明:由于Co OOH能够明显提高氧气还原反应(ORR)的催化活性,与未使用Co OOH的电极相比较,使用Co OOH为催化剂的电极首次放电容量高达5 093 m Ah·g~(-1),提高了1.7倍。电池的充电过电压降低了约460 m V,充电可逆性得到增强,充放电可逆性提高,使得循环性能得到显著改善。  相似文献   

3.
优化了碱性阴离子交换膜燃料电池(AAEMFC)使用的气体扩散电极(GDE),发现催化层中PTFE含量与催化剂担载量对电池性能与其电化学动力学特征影响很大.采用i-V曲线,开路电压,电池内阻与在线的电化学阻抗谱与动力学分析,评估了所制GDE的电化学性能.在所研究的AAEMFC电极催化层中,PTFE的最佳含量是20%,Pt载量对膜电极三相界面、催化层导电性与催化剂利用率的影响极大.当制备的GDE催化层中Pt/C的Pt载量为1.0mg/cm2,PTFE含量为20%时,AAEMFC的峰电流密度在50oC达到了213mW/cm2.兼顾Pt催化剂的利用率与成本,在没有明显影响电池性能的情况下,Pt的担载量可降至0.5mg/cm2.  相似文献   

4.
应用化学氧化(CO)和电化学氧化法(EO)于发泡式镍电极中引入CoOOH导电网络.循环伏安和X射线衍射法研究其还原氧化行为.实验表明,由化学氧化法制备的CoOOH(CO),其电化学还原氧化反应的可逆性优于CoOOH(EO);当镍电极的电位被强制性降低时,前者的结构能够保持稳定.因此,金属氢化物-镍电池经过强制性过放电储存后,于镍电极中引入CoOOH(CO)导电网络的电池容量保持率达到97.7%,而引入CoOOH(EO)导电网络的电池仅为81.4%.  相似文献   

5.
通过自发交换法使Au与非水性锂空气电池中的泡沫镍集流体发生反应,实现了金纳米层催化剂的原位负载.将其作为非水性锂空气电池正极,研究了不同气氛(纯氧、大气和模拟大气)下电池的电化学性能.结果表明,Au纳米层催化剂对氧还原反应/氧逸出反应起到了双功能催化作用,使得氧气电极在不同气氛下的首次放电容量与电压均显著提升,容量分别提升至9169,1604和1853 m A·h/gcarbon;同时氧气电极在模拟大气下的充电过电位降低,能量效率提高,循环性能得到一定提升.  相似文献   

6.
张爽  杨成飞  杨玉波  冯宁宁  杨刚 《化学学报》2022,80(9):1269-1276
锂-氧气电池因其超高的理论比容量而受到科研界的广泛关注, 但其存在较为严重的充放电极化和较差的循环稳定性等问题, 从而极大地限制其商业化进程. 因此设计出有效的正极催化剂是解决锂-氧气电池面临的这些棘手问题的必要手段. 通过对不同充电状态的废旧锂电池正极进行回收制得三种不同锂含量的多元金属氧化物LixMO (x=0.79, 0.30, 0.08; M=Ni/Co/Mn), 并分别用作锂-氧气电池正极催化剂. 系统研究了LixMO材料中锂含量及晶体结构对其电化学性能的影响. 电化学测试结果表明, 与Li0.79MO和Li0.08MO催化剂相比, 基于Li0.30MO为正极催化剂的锂-氧气电池在电流密度100 mA•g–1和限定容量800 mAh•g–1的条件下具有较高的放电比容量(14655.9 mAh•g–1)、较低的充电电压(3.83 V)和较高的能量转换效率(72.2%). 而且该电池体系在充放电循环140圈后充电终止电压仍低于4.3 V. 最终认为制得的Li0.30MO材料具有优异的催化性能归因于其稳定的层状-岩盐相复合结构以及结构中富含的氧化镍相和氧空位之间的协同作用. 这些优点能够促进放电产物的可逆形成与分解, 从而提高锂-氧气电池循环性能.  相似文献   

7.
通过对模拟电池进行恒流充放电、交流阻抗等测试和析气实验,研究了在亚镍中掺杂氧化钐SmO对镍电极电化学性能的影响。结果表明,掺杂氧化钐SmO的质量分数在1.0%时,镍电极的电化学阻抗变小,提高了镍电极电化学活性、高温性能与充电效率,能够有效抑制充电过程中氧的产生,在室温条件下以0.2C充放电时,掺杂SmO镍电极的放电比容量为138.04 mAh.g-1,比空白镍电极提高了23.01%;50℃下1C充放电时,放电比容量为90.313 mAh.g-1,较未添加氧化钐提高8.69%。  相似文献   

8.
郭丽敏  彭章泉 《分析化学》2013,41(2):307-314
基于锂-氧气反应的锂-空气电池在所有的锂电池体系中具有最大的理论容量和能量密度,认识锂-空气电池中的氧气电极反应对锂-空气电池的研发具有指导意义.本文以金电极/乙腈电解液为模型体系,介绍了锂-空气电池在放电和充电过程中的氧气电极反应机理.电池放电时,氧气还原成超氧自由基,超氧自由基与锂离子结合生成不稳定的超氧化锂;通过歧化反应,超氧化锂生成放电反应最终产物过氧化锂.电池充电时,过氧化锂通过一步两电子直接氧化生成氧气,不经过超氧化锂中间态.在阐述氧气电极反应机理的同时,还对研究氧气反应的各种电化学方法作了介绍.  相似文献   

9.
钒液流电池用碳纸电极改性的研究   总被引:1,自引:0,他引:1  
采用红外光谱和扫描电镜等手段研究了浓硫酸处理前、后碳纸的表面结构和形貌的变化。并将这类碳纸用作全钒液流氧化还原电池电极材料,对其电化学性能进行了详细研究。结果表明通过酸处理,碳纸表面有-COOH官能团生成,其电化学活性增强。酸处理后的碳纸电极组装成的电池在电流密度20 mA·cm-2时有良好充放电性能,平均电流和电压效率达到95%和82%。  相似文献   

10.
以(CH2OH)2、NH4F和HCl为电解液,纯Ti片、CuCl2和NaNO3为主要原料,联用阳极氧化和水热法制备CuO表面修饰锐钛矿TiO2纳米管阵列锂离子电池负极材料(CuO/TiO2)。使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱仪(EDS)、X射线光电子能谱仪(XPS)和X射线衍射(XRD),研究样品的形貌特征、元素分布、价态和微观物相组成。利用电池充放电测试仪和电化学工作站,探讨材料的电化学嵌锂性能。结果表明,表面修饰后的锐钛矿TiO2纳米管阵列外侧出现了大量绒毛状纳米CuO,单个绒毛结构的宽度约4 nm,长度约10 nm。在0.3C的电流密度下进行恒电流充放电测试,首次放电容量为550 mAh·g-1,充电容量为490 mAh·g-1。50次循环后,可逆电流容量仍保持在320 mAh·g-1,具有良好的循环稳定性和电化学特性。  相似文献   

11.
通过共沉淀法制备锂离子电池富锂锰基正极材料Li1.2Mn0.534Ni0.133Co0.133O2,并对其进行AlF3包覆。实验结果表明,通过AlF3包覆,材料的电化学性能得到明显提高。在0.2C下,包覆前材料的首次放电比容量为253 mAh.g-1,首次充放电效率仅为88.8%。经过AlF3包覆,材料的首次放电比容量提高到294 mAh.g-1,首次充放电效率高达96.4%。同样,在1.0C下循环50次,未包覆材料的放电比容量由225 mAh.g-1降到185 mAh.g-1,容量保持率仅为82.2%。经过AlF3包覆,材料的放电比容量由230mAh.g-1仅降为222 mAh.g-1,容量保持率高达96.5%。  相似文献   

12.
Li3V2(PO4)3的溶胶-凝胶法合成及其性能研究   总被引:11,自引:0,他引:11  
以LiOH·H2O、NH4VO3、H3PO4和柠檬酸等为原料采用溶胶-凝胶法合成了锂离子二次电池正极材料磷酸钒锂(Li3V2(PO4)3)。考察了煅烧温度和配位剂种类等条件对产物组成及电化学性能的影响。研究了优化条件下制得样品的循环伏安、充放电性能和循环性能。0.1 C条件下,样品首次放电比容量达129.81 mAh·g-1,经过100次循环后容量几乎没有衰减,仍保持在128 mAh·g-1。X射线衍射研究表明合成单一Li3V2(PO4)3晶体所需温度比固相法低;并考察了循环20次后材料充电到各个单相的晶体结构,通过X射线衍射和最小二乘法计算给出了其晶胞参数变化过程,证实了循环嵌Li过程中晶体结构能够得到重现。  相似文献   

13.
We report a convenient, low-cost and ecofriendly approach for the fabrication of a Co3O4/CoOOH electrode material intended for lithium ion batteries (LIBs) and supercapacitors (SCs) using the electrochemical dispersion of the cobalt foil through the pulse alternating current (PAC) method. The synthesized material is a Co3O4/CoOOH composite (with about 10–15 wt% CoOOH) in the form of nanosheets with a length of approximately 200 nm and a thickness of 10–20 nm. It is found to exhibit high reversible discharge specific capacities and good cycling behavior while tested as the anode material in LIBs. Measuring the reversible capacitance at high (2C) and low (C/20) cycling rates gives the values of 610 mAh g−1 and 1030 mAh g−1, respectively. The specimen possesses excellent performance as the electrode for SCs with the retention of capacitance up to 98% at the current density increasing from 0.5 to 10 A g−1. After 1000 cycles at a current density of 10 A g−1 the electrode maintains about 90% of its initial capacitance which evidences the long cycle life. Hence, electrochemically prepared Co3O4/CoOOH seems to be a promising candidate for high-performance LIBs and SCs applications.  相似文献   

14.
以氟化锂为氟源,通过高温固相法合成了F掺杂的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2。采用X射线衍射仪(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)和电化学测试等手段研究F影响LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2结构和性能的微观机制。结果表明:适量F掺杂可以提高正极材料的放电比容量,改善其倍率性、循环性和热稳定性。当F掺杂量(物质的量分数)为1.5%时,材料的综合电化学性能最优,初始放电比容量(0.2C)和50周循环容量保持率(1C)分别由原始的174.0 mAh·g~(-1)(78.7%)提高到178.6 mAh·g~(-1)(85.7%)。LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料性能的改善可归因于F能够增强过渡金属层、锂层与氧层之间的结合力,提高材料的结构稳定性。此外,F掺杂还有利于降低电化学反应中的界面电阻和电荷转移阻抗。  相似文献   

15.
通过原位反应法,利用富镍层状金属氧化物LiNi0.8Co0.1Mn0.1O2(LNCM811)正极材料表面残余的氢氧化锂和碳酸锂,与C8H20O4Ti和(NH4)H2PO4反应,在LNCM811表面原位生成快离子导体LiTi2(PO43(LTP)包覆层。这种原位反应的包覆方法有利于移除LNCM811表面有害的残留物氢氧化锂和碳酸锂。而且,获得的LTP均匀包覆层不仅可以有效地抑制LNCM811表面和电解液的直接接触及其副反应,还可以确保充放电循环过程中LNCM811正极材料的快速Li+传导。因此,在LTP包覆层的多重作用下,LTP包覆的LNCM811正极材料具有优异的循环稳定性和倍率性能:在0.2C时,首次放电比容量高达200.6 mAh·g-1,200圈后的可逆容量依然有155.7 mAh·g-1;在2C和5C的高电流密度下,200圈后的可逆容量仍然有126.4和111.9 mAh·g-1。  相似文献   

16.
采用高温固相法2步合成了掺Cr的锂离子电池正极材料LiV1-xCrxPO4F(x=0,0.01,0.03,0.05,0.07),XRD测试表明LiV1-xCrxPO4F属三斜晶系。通过恒电流充放电,循环伏安和交流阻抗实验表明:掺Cr后LiVPO4F正极材料更有利于锂离子的嵌入和嵌出,材料的放电容量和循环性能进一步提高,例如,铬掺杂的LiVPO4F样品在室温、0.2 C倍率下充放电,循环50周后容量在110 mAh·g-1以上。文中还讨论了充放电容量随掺Cr量的关系,nCr含量为0.03的LiV1-xCrxPO4F有着较高的放电平台和良好的循环稳定性。  相似文献   

17.
首次将尖晶石相的纳米Fe3S4材料用作镁二次电池的正极材料。采用水热法一步合成了具有纳米结构的Fe3S4材料, 并采用XRD、SEM测试手段对产物的物相、形貌进行了表征。实验结果表明, 在160 ℃能够合成纯相的Fe3S4材料, 该材料具有银耳状纳米结构。电化学测试结果显示, 水热法合成的纳米Fe3S4材料能够在镁二次电池体系中进行有效的可逆充放电, 放电平台电压为0.9 V, 首次放电容量高达267 mAh·g-1, 50次循环后衰减至110 mAh·g-1。电化学交流阻抗测试结果表明镁离子能够在Fe3S4晶格中扩散。  相似文献   

18.
首次将尖晶石相的纳米Fe3S4材料用作镁二次电池的正极材料。采用水热法一步合成了具有纳米结构的Fe3S4材料, 并采用XRD、SEM测试手段对产物的物相、形貌进行了表征。实验结果表明, 在160 ℃能够合成纯相的Fe3S4材料, 该材料具有银耳状纳米结构。电化学测试结果显示, 水热法合成的纳米Fe3S4材料能够在镁二次电池体系中进行有效的可逆充放电, 放电平台电压为0.9 V, 首次放电容量高达267 mAh· g-1, 50次循环后衰减至110 mAh· g-1。电化学交流阻抗测试结果表明镁离子能够在Fe3S4晶格中扩散。  相似文献   

19.
以浓盐酸为浸出剂,以NaOH和NH4HCO3为沉淀剂,利用Mn2+在碱性条件下的氧化反应改变离子的沉淀次序进而分步回收的方案,探究了浓盐酸酸浸处理三元正极材料LiNi0.8Co0.05Mn0.15O2的最佳条件。在分步沉淀过程中,Mn2+被氧化为不溶于非还原性酸的MnO(OH)2,并在酸性条件下回收。Ni、Co则在碱性条件下利用NaOH回收,而Li则利用NH4HCO3回收。该方法中Mn的回收率达到85.1%,产品纯度达到98.6%; Li的回收率达到95.0%,产品纯度达到99.3%。由回收材料重新合成的三元正极组装的软包电池的首圈放电比容量达到了175 mAh·g-1,可以以超过99.5%的库仑效率稳定循环50圈。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号