首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
采用简单的超声自组装法制备了石墨烯/三氧化钼纳米带复合材料。最终产物的组成和结构采用多种不同的手段进行了表征,包括扫描电镜、透射电镜、X射线衍射、拉曼光谱以及热分析等。该复合材料可以用作超级电容器电极材料。电化学实验结果表明石墨烯/三氧化钼纳米带复合材料比电容可达到285.5 F·g-1,且在电流密度为1 A·g-1时经过1 000次循环后其电容值能保持初始值的99.5%.  相似文献   

2.
首先利用硬模板法制备出介孔碳/石墨烯复合材料,然后向复合材料中引入具有赝电容活性的醌类分子进一步增大材料的电容性能。研究结果表明,负载30%(w/w)叔丁基氢醌的介孔碳/石墨烯复合材料具有最佳的电容性能,在电流密度为0.5 A·g-1时,比电容值为355 F·g-1;当电流密度高达30 A·g-1时,其比电容值高达226 F·g-1,比电容保持率为64%,表现出良好的速率特性。  相似文献   

3.
采用溶剂热法成功制备了纳米CuFe2O4-rGO复合材料。通过X射线衍射(XRD),扫描电子显微镜(SEM)、透射电子显微镜(TEM)和电化学工作站对样品的结构、形貌及电容特性进行表征。结果表明,CuFe2O4纳米粒子均匀地分散在石墨烯片层间,其中CuFe2O4-20% rGO复合材料具有最优的电化学性能,当电流密度1 A·g-1时,其比电容为1 952.5 F·g-1,当电流密度为1 A·g-1时,CuFe2O4-20% rGO复合材料经1 000次充放电后的比电容保持率为86.17%。  相似文献   

4.
以水杨酸为模板剂和还原剂,采用水热法制备得到了一种MoO3纳米带/RGO复合材料。利用XRD、SEM、TEM、拉曼光谱、恒流充放电、交流阻抗等手段对样品的结构、形貌以及电化学性能进行表征。测试结果表明,MoO3纳米带/RGO复合材料作为锂离子电池负极材料,在50mA·g-1的电流密度下可逆比容量为1000mAh·g-1,循环50次后比容量还保持在950mAh·g-1,相比于MoO3纳米带其容量保持能力和循环性能得到了显著改善。  相似文献   

5.
合成了一种石墨烯基纳米复合材料即:由氮掺杂碳层包覆的金属钴纳米颗粒,充分分散于氮掺杂的石墨烯表面。这种纳米复合材料进一步提高了石墨烯的导电性,增加了石墨烯的储锂容量。该材料被用作锂离子电池负极材料,在性能测试中展现了良好的循环性能,在以100 mA·g-1的电流密度循环200圈后,放电容量高达950.1 mAh·g-1,库伦效率约为98%。  相似文献   

6.
通过两步法制备了一种空心六边形镍钴硫化物(HHNCS)与还原氧化石墨烯(RGO)的纳米复合材料HHNCS/RGO。利用XRD,SEM,TEM和Raman光谱等对复合物进行表征,发现镍钴硫化物为空心六边形结构,并且均匀地附着在RGO的表面。该纳米复合物用作超级电容器电极表现出优异的电化学性能。在电流密度为1 A·g-1时比电容为927 F·g-1;当电流密度增大到20 A·g-1时,比电容仍高达724 F·g-1,表明材料拥有较好的倍率性能。此外,在电流密度5 A·g-1下循环2000次后比电容保留有初始值的93%,显示出优异的循环稳定性。HHNCS/RGO优异的电容性能主要是由于RGO的存在不仅增强了材料的导电性,而且作为理想的载体分散HHNCS纳米片。HHNCS/RGO纳米复合物优异的电化学性能使其在超级电容器电极材料领域具有应用前景。  相似文献   

7.
合成了一种石墨烯基纳米复合材料即:由氮掺杂碳层包覆的金属钴纳米颗粒,充分分散于氮掺杂的石墨烯表面。这种纳米复合材料进一步提高了石墨烯的导电性,增加了石墨烯的储锂容量。该材料被用作锂离子电池负极材料,在性能测试中展现了良好的循环性能,在以100 mA·g-1的电流密度循环200圈后,放电容量高达950.1 mAh·g-1,库伦效率约为98%。  相似文献   

8.
以高浓度氧化石墨烯(GO)溶液作为反应前驱体,纳米纤维素(NC)作为物理间隔物和电解液储存器,通过简单的一步水热法制备了纳米纤维素/还原氧化石墨烯(NC/rGO)复合材料,并探究了其作为超级电容器电极材料的潜力。结果如下:NC添加量为1 mL所制备的NC/rGO-1具有最佳电化学性能。基于NC/rGO-1的无黏合剂对称型超级电容器在0.3 A·g-1的电流密度下显示出了 269.33 F·g-1和 350.13 F·cm-3的高质量和体积比电容,并在 10.0 A·g-1时仍能达到 215.88 F·g-1和 280.62 F·cm-3(其初始值的 80.15%)。组装器件还显示出了较高的质量和体积能量密度(9.3 Wh·kg-1和 12.13 Wh·L-1)和出色的循环性能(10 A·g-1下10 000次循环后其初始比电容仅减少6.02%)。  相似文献   

9.
通过化学浴沉积和水热法在泡沫镍上制备了NiO/MnO2分级纳米片阵列复合材料,XRD和SEM测试表明NiO纳米片垂直生长在泡沫镍上,交叉形成网状阵列结构;MnO2纳米介孔泡沫进一步生长在NiO纳米片两侧,与NiO形成了壳核式的复合结构。循环伏安和恒流充放电测试发现,NiO/MnO2分级纳米片阵列复合材料的电化学性能相比复合前得到明显改善,在1 A·g-1的电流密度下,比电容提高至1 297 F·g-1;2 A·g-1下循环1 000次,比电容保持率高达97%,比电容和循环性能的改善是由于分级纳米片阵列复合结构方便了电解液传质,扩大了活性材料与电解液的接触,促进了赝电容反应,提高了NiO和MnO2的结构稳定性。  相似文献   

10.
以具有多级孔结构、高比表面积、良好导电性等特征的碳纳米笼(CNCs)为前体,采用硝酸氧化法在CNCs表面引入含氧官能团。以CNCs为超级电容器电极材料,在相同电流密度下,官能团化样品的比电容显著高于纯CNCs;在1A·g-1下比电容最高可达到255F·g-1,比纯CNCs的188F·g-1增加了34%,这表明表面含氧官能团化能够显著提高CNCs的超级电容器比电容。在100A·g-1的大电流密度下,硝酸氧化后CNCs的比电容保持在111~167F·g-1,表明具有良好的耐大电流充放电性能。在10A·g-1的电流密度下循环10000圈后,CNC-6M样品的比电容由196F·g-1下降到176F·g-1,样品的比电容仍保留90%,具有良好的循环稳定性。表面含氧官能团化CNCs所表现出的这种优异的超级电容器性能归因于CNCs的多尺度分级孔结构、高比表面积、良好的导电性、表面亲水性含氧官能团化带来的浸润性提高和引入的赝电容。  相似文献   

11.
以水杨酸为模板剂和还原剂,采用水热法制备得到了一种MoO3纳米带/RGO复合材料。利用XRD、SEM、TEM、拉曼光谱、恒流充放电、交流阻抗等手段对样品的结构、形貌以及电化学性能进行表征。测试结果表明,MoO3纳米带/RGO复合材料作为锂离子电池负极材料,在50 m A·g-1的电流密度下可逆比容量为1 000 m Ah·g-1,循环50次后比容量还保持在950 m Ah·g-1,相比于MoO3纳米带其容量保持能力和循环性能得到了显著改善。  相似文献   

12.
以氧化石墨烯(GO)为基底,Fe(NO_3)_3·9H_2O、异丙醇、甘油为原料,通过溶剂热法和后续热处理过程2步合成了Fe_3O_4@C/rGO复合材料,实现了碳包覆的Fe_3O_4纳米粒子自组装形成的分级结构空心球在氧化石墨烯片上的原位生长。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒流充放电等手段分析了材料的物理化学性能与储锂性能。结果表明,该复合材料在5.0 A·g~(-1)的电流密度下,仍有437.7 mAh·g~(-1)的可逆容量,在1.0 A·g~(-1)下循环200圈后还有587.3 mAh·g~(-1)的放电比容量。这主要归因于还原态氧化石墨烯(rGO)对碳包覆Fe_3O_4分级空心球整体结构稳定性和导电性的提高。  相似文献   

13.
采用溶剂热法成功制备了纳米CuFe_2O_4-rGO复合材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和电化学工作站对样品的结构、形貌及电容特性进行表征。结果表明,CuFe_2O_4纳米粒子均匀地分散在石墨烯片层间,其中CuFe_2O_4-20%rGO复合材料具有最优的电化学性能,当电流密度1 A·g~(-1)时,其比电容为1 952.5 F·g~(-1),当电流密度为1 A·g~(-1)时,CuFe_2O_4-20%rGO复合材料经1 000次充放电后的比电容保持率为86.17%。  相似文献   

14.
Molybdenum trioxide (MoO3) has attracted considerable attention due to their typical two-dimensional layered structure consisting of double layers of edge- and vertex-sharing MoO6 octahedral being weakly held together by van der Waals bonds. These MoO3 nanostructures and their polymer composites are currently drawing interest for the potential applications of Li batteries, supercapacitors, and other electrochemical as well as electrochromic display devices. In this paper, we report the synthesis of MoO3 nanobelts and polyethylene glycol (PEG) surfactant MoO3 nanobelts by hydrothermal method. Structure and morphology of the samples were investigated by X-ray diffraction, Fourier transform spectroscopy, scanning electron microscopy, and transmission electron microscopy (TEM). The pure MoO3 nanobelts show an initial specific capacity of 275 mAh g−1, whereas the 0.5 mol% PEG surfactant MoO3 nanobelts show 307 mAh g−1 at constant current density of 30.7 mA g−1 with the 1.0–3.0 V vs. Li/Li+ potential range. It was found that PEG surfactant MoO3 nanobelts show not only a high initial specific capacity but also show better cyclic performance compared with that of pure MoO3 nanobelts. The PEG surfactant MoO3 nanobelts show stability and improvement of the specific capacity due to decreasing the length, width, and thickness of the nanobelts by surface reaction. Electrochemical impedance spectroscopy reveals that the PEG surfactant MoO3 nanobelts exhibit low electrode resistance compared with pure MoO3 nanobelts.  相似文献   

15.
The orthorhombic molybdenum trioxide (α-MoO3) nanobelts and polyvinyl pyrrolidone (PVP) surfactant MoO3 nanobelts with high quality were prepared through hydrothermal synthesis. The morphology and microstructure of the samples were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The nanobelts with rectangular cross-section have an orthorhombic phase structure, preferentially grow in [001] direction. The results showed that the H atoms in polyvinyl pyrrolidone are H-bonded with the O atoms in the MoO bonds of MoO3 nanobelts. When MoO3 is modified by the intercalation of PVP, it is effectively shielded against electrostatic interaction between the MoO3 interlayer and Li+ ions. The specific capacity of pure MoO3 nanobelts battery and (PVP)0.2MoO3 nanobelts exhibit as 195 mAh g−1 and 237 mAh g−1, respectively after 14 cycles, suggests that the stability of surfactant material is worthy.  相似文献   

16.
采用水热法合成了MoO_3/酚醛树脂前驱体,然后在空气中进行煅烧处理,成功制备了一种新型核壳MoOx/C微球。对材料的晶体结构、形貌和元素价态进行分析表明,该材料的主要成分是单斜相MoO_2、正交晶系MoO_3和碳。树脂在空气中的煅烧碳化将MoO_3/酚醛树脂前驱体中的六方晶系的MoO_3还原为单斜相MoO_2。其中少量的MoO_2会在空气中重新被氧化成正交晶系的MoO_3,形成了MoO_2/MoO_3异质结构。在这一系列反应的综合作用下,形成这种表面有裂纹的核壳MoOx/C微球复合材料。将该材料用作锂离子电池负极材料,表现出了循环稳定性高、倍率性能好等优异的电化学性能。在100 mA·g-1的电流密度下充放电循环100次之后,可逆容量达640.6 mAh·g-1。  相似文献   

17.
通过溶剂热反应-水热处理的途径,制备了无定形碳包覆的ZnS纳米晶体(ZnS@C)与还原氧化石墨烯(rGO)复合的ZnS@C/rGO复合材料,并用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)对复合材料进行了形貌和微观结构的表征。电化学测试结果表明,与ZnS@C和ZnS/rGO相比,所制备的ZnS@C/rGO复合材料显示了显著增强的电化学储锂性能,在100 mA·g-1电流密度下,其电化学储锂的首次可逆比容量为1 101 mAh·g-1,充放电循环100次后其可逆比容量为1 569 mAh·g-1。在不同电流密度下循环1 200次后,仍保持在2.0 A·g-1电流密度下有1 096 mAh·g-1的可逆比容量,显示了其稳定的长循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号