首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We report a theoretical study of the effect induced by a helium nanodroplet environment on the fragmentation dynamics of a dopant. The dopant is an ionized neon cluster Ne(n) (+) (n=4-6) surrounded by a helium nanodroplet composed of 100 atoms. A newly designed mixed quantum/classical approach is used to take into account both the large helium cluster zero-point energy due to the light mass of the helium atoms and all the nonadiabatic couplings between the Ne(n) (+) potential-energy surfaces. The results reveal that the intermediate ionic dopant can be ejected from the droplet, possibly with some helium atoms still attached, thereby reducing the cooling power of the droplet. Energy relaxation by helium atom evaporation and dissociation, the other mechanism which has been used in most interpretations of doped helium cluster dynamics, also exhibits new features. The kinetic energy distribution of the neutral monomer fragments can be fitted to the sum of two Boltzmann distributions, one with a low kinetic energy and the other with a higher kinetic energy. This indicates that cooling by helium atom evaporation is more efficient than was believed so far, as suggested by recent experiments. The results also reveal the predominance of Ne(2) (+) and He(q)Ne(2) (+) fragments and the absence of bare Ne(+) fragments, in agreement with available experimental data (obtained for larger helium nanodroplets). Moreover, the abundance in fragments with a trimeric neon core is found to increase with the increase in dopant size. Most of the fragmentation is achieved within 10 ps and the only subsequent dynamical process is the relaxation of hot intermediate He(q)Ne(2) (+) species to Ne(2) (+) by helium atom evaporation. The dependence of the ionic fragment distribution on the parent ion electronic state reached by ionization is also investigated. It reveals that He(q)Ne(+) fragments are produced only from the highest electronic state, whereas He(q)Ne(2) (+) fragments originate from all the electronic states. Surprisingly, the highest electronic states also lead to fragments that still contain the original ionic dopant species. A mechanism is conjectured to explain this fragmentation inhibition.  相似文献   

2.
The He(n)(+)/He(2)(+) (n ≥ 3) signal ratios in the mass spectra derived from electron impact ionization of pure helium nanodroplets are shown to increase with droplet size, reaching an asymptotic limit at an average droplet size of approximately 50,000 helium atoms. This is explained in terms of a charge hopping model, where on average the positive charge is able to penetrate more deeply into the liquid helium as the droplet size increases. The deeper the point where the charge localizes to form He(2)(+), the greater the likelihood of collisions with the surrounding helium as the ion begins to leave the droplet, thus increasing the probability that helium will be ejected in the form of He(n)(+) (n ≥ 3) cluster ions rather than He(2)(+). The addition of a dopant alters the He(n)(+)/He(2)(+) ratio for small helium droplets, an observation attributed to the potential energy gradient created by the cation-dopant interaction and its effect in drawing the positive charge towards the dopant in the interior of the droplet.  相似文献   

3.
Helium atoms bind strongly to alkali cations which, when embedded in liquid helium, form so-called snowballs. Calculations suggest that helium atoms in the first solvation layer of these snowballs form rigid structures and that their number (n) is well defined, especially for the lighter alkalis. However, experiments have so far failed to accurately determine values of n. We present high-resolution mass spectra of Na(+)He(n), K(+)He(n), Na(2)(+)He(n) and K(2)(+)He(n), formed by electron ionization of doped helium droplets; the data allow for a critical comparison with several theoretical studies. For sodium and potassium monomers the spectra indicate that the value of n is slightly smaller than calculated. Na(2)(+)He(n) displays two distinct anomalies at n=2 and n=6, in agreement with theory; dissociation energies derived from experiment closely track theoretical values. K(2)(+)He(n) distributions are fairly featureless, which also agrees with predictions.  相似文献   

4.
The solvation of Ba(+) ions created by the photoionization of barium atoms located on the surface of helium nanodroplets has been investigated. The excitation spectra corresponding to the 6p (2)P(1∕2) ← 6s (2)S(1∕2) and 6p (2)P(3∕2) ← 6s (2)S(1∕2) transitions of Ba(+) are found to be identical to those recorded in bulk He II [H. J. Reyher, H. Bauer, C. Huber, R. Mayer, A. Schafer, and A. Winnacker, Phys. Lett. A 115, 238 (1986)], indicating that the ions formed at the surface of the helium droplets become fully solvated by the helium. Time-of-flight mass spectra suggest that following the excitation of the solvated Ba(+) ions, these are being ejected from the helium droplets either as bare Ba(+) ions or as small Ba(+)He(n) (n < 20) complexes.  相似文献   

5.
Electron impact mass spectra have been recorded for helium nanodroplets containing water clusters. In addition to identification of both H(+)(H(2)O)(n) and (H(2)O)(n)(+) ions in the gas phase, additional peaks are observed which are assigned to He(H(2)O)(n)(+) clusters for up to n=27. No clusters are detected with more than one helium atom attached. The interpretation of these findings is that quenching of (H(2)O)(n)(+) by the surrounding helium can cool the cluster to the point where not only is fragmentation to H(+)(H(2)O)(m) (where m < or = n-1) avoided, but also, in some cases, a helium atom can remain attached to the cluster ion as it escapes into the gas phase. Ab initio calculations suggest that the first step after ionization is the rapid formation of distinct H(3)O(+) and OH units within the (H(2)O)(n)(+) cluster. To explain the formation and survival of He(H(2)O)(n)(+) clusters through to detection, the H(3)O(+) is assumed to be located at the surface of the cluster with a dangling O-H bond to which a single helium atom can attach via a charge-induced dipole interaction. This study suggests that, like H(+)(H(2)O)(n) ions, the preferential location for the positive charge in large (H(2)O)(n)(+) clusters is on the surface rather than as a solvated ion in the interior of the cluster.  相似文献   

6.
Photoionization of He droplets doped with rare gas atoms (Rg=Ne, Ar, Kr, and Xe) was studied by time-of-flight mass spectrometry, utilizing synchrotron radiation from the Advanced Light Source from 10 to 30 eV. High resolution mass spectra were obtained at selected photon energies, and photoion yield curves were measured for several ion masses (or ranges of ion masses) over a wide range of photon energies. Only indirect ionization of the dopant rare gas atoms was observed, either by excitation or charge transfer from the surrounding He atoms. Significant dopant ionization from excitation transfer was seen at 21.6 eV, the maximum of He 2p 1P absorption band for He droplets, and from charge transfer above 23 eV, the threshold for ionization of pure He droplets. No Ne+ or Ar+ signal from droplet photoionization was observed, but peaks from HenNe+ and HenAr+ were seen that clearly originated from droplets. For droplets doped with Rg=Kr or Xe, both Rg+ and HenRg+ ions were observed. For all rare gases, Rg2+ and HenRgm+ (n,m> or =1) were produced by droplet photoionization. Mechanisms of dopant ionization and subsequent dynamics are discussed.  相似文献   

7.
Path integral Monte Carlo calculations of (4)He nanodroplets doped with alkali (Na(+), K(+) and Cs(+)) and alkali-earth (Be(+) and Mg(+)) ions are presented. We study the system at T = 1 K and between 14 and 128 (4)He atoms. For all studied systems, we find that the ion is well localized at the center of the droplet with the formation of a "snowball" of well-defined shells of localized (4)He atoms forming solid-like order in at least the first surrounding shell. The number of surrounding helium shells (two or three) and the number of atoms per shell and the degree of localization of the helium atoms are sensitive to the type of ion. The number of (4)He atoms in the first shell varies from 12 for Na(+) to 18 for Mg(+) and depends weakly on the size of the droplet. The study of the density profile and of the angular correlations shows that the local solid-like order is more pronounced for the alkali ions with Na(+) giving a very stable icosahedral order extending up to three shells.  相似文献   

8.
Electron impact ionization of helium nano-droplets containing several 104 He atoms and doped with CCl4 or SF6 molecules is studied with high-mass resolution. The mass spectra show significant clustering of CCl4 molecules, less so for SF6 under our experimental conditions. Positive ion efficiency curves as a function of electron energy indicate complete immersion of the molecules inside the helium droplets in both cases. For CCl4 we observe the molecular parent cation CCl4+ that preferentially is formed via Penning ionization upon collisions with He*. In contrast, no parent cation SF6+ is seen for He droplets doped with SF6. The fragmentation patterns for both molecules embedded in He are compared with gas phase studies. Ionization via electron transfer to He+ forms highly excited ions that cannot be stabilized by the surrounding He droplet. Besides the atomic fragments F+ and Cl+ several molecular fragment cations are observed with He atoms attached.  相似文献   

9.
We report the non-desorption of cesium (Cs) atoms on the surface of helium nanodroplets (He(N)) in their 6(2)P(1/2) ((2)Π(1/2)) state upon photo-excitation as well as the immersion of Cs(+) into the He(N) upon photo-ionization via the 6(2)P(1/2) ((2)Π(1/2)) state. Cesium atoms on the surface of helium nanodroplets are excited with a laser to the 6(2)P states. We compare laser-induced fluorescence (LIF) spectra with a desorption-sensitive method (Langmuir-Taylor detection) for different excitation energies. Dispersed fluorescence spectra show a broadening of the emission spectrum only when Cs-He(N) is excited with photon energies close to the atomic D(1)-line, which implies an attractive character of the excited state system (Cs?-He(N)) potential energy curve. The experimental data are compared with a calculation of the potential energy curves of the Cs atom as a function of its distance R from the center of the He(N) in a pseudo-diatomic model. Calculated Franck-Condon factors for emission from the 6(2)P(1/2) ((2)Π(1/2)) to the 6(2)S(1/2) ((2)Σ(1/2)) state help to explain the experimental data. The stability of the Cs?-He(N) system allows to form Cs(+) snowballs in the He(N), where we use the non-desorbing 6(2)P(1/2) ((2)Π(1/2)) state as a springboard for ionization in a two-step ionization scheme. Subsequent immersion of positively charged Cs ions is observed in time-of-flight mass spectra, where masses up to several thousand amu were monitored. Only ionization via the 6(2)P(1/2) ((2)Π(1/2)) state gives rise to a very high yield of immersed Cs(+) in contrast to an ionization scheme via the 6(2)P(3/2) ((2)Π(3/2)) state. When resonant two-photon ionization is applied to cesium dimers on He droplets, Cs(2) (+)-He(N) aggregates are observed in time-of-flight mass spectra.  相似文献   

10.
A study has been made of the ion chemistry of a series of small molecules that have been embedded in helium nanodroplets. In most instances, the molecules H2O, SO2, CO2, CH3OH, C2H5OH, C3H7OH, CH3F, and CH3Cl have been allowed to form clusters, and reactivity within these has been initiated through electron impact ionization. For two of the molecules studied, CF2Cl2 and CF3I, reactivity is believed to originate from single molecules embedded in the droplets. Electron impact on the droplets is thought to first create a helium ion, and formation of molecular ions is then assumed to proceed via a charge hopping mechanism that propagates though the droplet and terminates with charge-transfer to a molecule or cluster. The chemistry exhibited by many of the cluster ions and at least one of the single molecular ions is very different from that observed for the same species in isolation. In most cases, reactivity appears to be dominated by high-energy bond breaking processes as opposed to, in the case of the clusters, ion-molecule reactions. Overall, charge-transfer from He+ does not appear to be a "soft" ionization mechanism.  相似文献   

11.
The electron ionization of helium droplets doped with methane clusters is investigated for the first time using high-resolution mass spectrometry. The dominant ion products ejected into the gas phase are the unprotonated (CH(4))(n)(+) cluster ions along with the protonated ions, CH(5)(+)(CH(4))(n-1). The mass spectra show clear evidence for magic numbers, which are broadly consistent with icosahedral shell closings. However, unusual features were observed, including different magic numbers for CH(5)(+)(CH(4))(n-1) (n=55, 148) when compared to (CH(4))(n)(+) (n=54, 147). Possible interpretations for some of these differences are proposed. Products of the type [C(2)H(x)(CH(4))(n)](+), which result from ion-molecule chemistry, are also observed and these too show clear magic number features. Finally, we report the first observation of (CH(4))(n)(2+) dications from methane clusters. The threshold for dication survival occurs at n≥70 and is in good agreement with a liquid droplet model for fission of multiply charged ions. Furthermore, we present evidence showing that these dications are formed by an unusual two-step mechanism which is initiated by charge transfer to generate a monocation and is then followed by Penning ionization to generate a dication.  相似文献   

12.
A technique that combines infrared laser spectroscopy and helium nanodroplet mass spectrometry, which we refer to as optically selected mass spectrometry, is used to study the efficiency of ion cooling in helium. Electron-impact ionization is used to form He(+) ions within the droplets, which go on to transfer their charge to the HCN dopant molecules. Depending upon the droplet size, the newly formed ion either fragments or is cooled by the helium before fragmentation can occur. Comparisons with gas-phase fragmentation data suggest that the cooling provided by the helium is highly nonthermal. An "explosive" model is proposed for the cooling process, given that the initially hot ion is embedded in such a cold solvent.  相似文献   

13.
Results of a detailed study on electron interactions with nitromethane (CH(3)NO(2)) embedded in helium nanodroplets are reported. Anionic and cationic products formed are analysed by mass spectrometry. When the doped helium droplets are irradiated with low-energy electrons of about 2 eV kinetic energy, exclusively parent cluster anions (CH(3)NO(2))(n)(-) are formed. At 8.5 eV, three anion cluster series are observed, i.e., (CH(3)NO(2))(n)(-), [(CH(3)NO(2))(n)-H](-), and (CH(3)NO(2))(n)NO(2)(-), the latter being the most abundant. The results obtained for anions are compared with previous electron attachment studies with bare nitromethane and nitromethane condensed on a surface. The cation chemistry (induced by electron ionization of the helium matrix at 70 eV and subsequent charge transfer from He(+) to the dopant cluster) is dominated by production of methylated and protonated nitromethane clusters, (CH(3)NO(2))(n)CH(3)(+) and (CH(3)NO(2))(n)H(+).  相似文献   

14.
We have investigated the ionization threshold behavior of small helium cluster ions (cluster size n=2-10) formed via electron-impact ionization of neutral helium droplets and derive appearance energies for mass-selected cluster ions using a nonlinear least-square-fitting procedure. Moreover, we report magic numbers in the mass spectrum observed at the electron energy of 70 eV. The apparatus used for the present measurements is a hemispherical electron monochromator combined with a quadrupole mass spectrometer. Our experiment demonstrates that helium clusters are not only exclusively formed via direct ionization above the atomic ionization potential but also indirectly via autoionizing Rydberg states. The present results are compared with previous electron-impact and photoionization results.  相似文献   

15.
Helium droplets spanning a wide size range, N(He) = 10(3)-10(10), were formed in a continuous-nozzle beam expansion at different nozzle temperatures and a constant stagnation pressure of 20 bars. The average sizes of the droplets have been obtained by attenuation of the droplet beam through collisions with argon and helium gases at room temperature. The results obtained are in good agreement with previous measurements in the size range N(He) = 10(5)-10(7). Moreover, the measurements give the average sizes in the previously uncharacterized range of very large droplets of 10(7)-10(10) atoms. The droplet sizes and beam flux increase rapidly at nozzle temperatures below 6 K, which is ascribed to the formation of droplets within the nozzle interior. The mass spectra of the droplet beam upon electron impact ionization have also been obtained. The spectra show a large increase in the intensity of the He(4) (+) signal upon increase of the droplet size, an effect which can be used as a secondary size standard in the droplet size range N(He) = 10(4)-10(9) atoms.  相似文献   

16.
Clusters of krypton are generated in a supersonic expansion and size selected by deflection from a helium target beam. By measuring angular distributions for different fragment masses and time-of-flight distributions for fixed deflection angles and fragment masses, the complete fragmentation patterns for electron impact ionization at 70 eV are obtained from the dimer to the heptamer. For each of the neutral Kr(n) clusters studied, the main fragment is the monomer Kr(+) ion with a probability f(n)(1) > 90%. The probability of observing dimer Kr(2)(+) ions is much smaller than expected for each initial cluster size. The trimer ion Kr(3)(+) appears first from the neutral Kr(5), and its fraction increases with increasing neutral cluster size n, but is always much smaller than that of the monomer or dimer. For neutral Kr(7), all possible ion fragments are observed, but the monomer still represents 90% of the overall probability and fragments with n > 3 contribute less than 1% of the total. Aspects of the Kr(n) cluster ionization process and the experimental measurements are discussed to provide possible reasons for the surprisingly high probability of observing fragmentation to the Kr(+) monomer ion.  相似文献   

17.
The chemistry of carbon dioxide has been surveyed systematically with 46 atomic cations at room temperature using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. The atomic cations were produced at ca. 5500 K in an ICP source and allowed to cool radiatively and to thermalize by collisions with Ar and He atoms prior to reaction downstream in a flow tube in helium buffer gas at 0.35 +/- 0.01 Torr and 295 +/- 2 K. Rate coefficients and products were measured for the reactions of first-row atomic ions from K(+) to Se(+), of second-row atomic ions from Rb(+) to Te(+) (excluding Tc(+)), and of third-row atomic ions from Cs(+) to Bi(+). CO(2) was found to react in a bimolecular fashion by O atom transfer only with 9 early transition-metal cations: the group 3 cations Sc(+), Y(+), and La(+), the group 4 cations Ti(+), Zr(+), and Hf(+), the group 5 cations Nb(+) and Ta(+), and the group 6 cation W(+). Electron spin conservation was observed to control the kinetics of O atom transfer. Addition of CO(2) was observed for the remaining 37 cations. While the rate of addition was not measurable some insight was obtained into the standard free energy change, DeltaG(o), for CO(2) ligation from equilibrium constant measurements. A periodic variation in DeltaG(o) was observed for first row cations that is consistent with previous calculations of bond energies D(0)(M(+)-CO(2)). The observed trends in D(0) and DeltaG(o) are expected from the variation in electrostatic attraction between M(+) and CO(2) which follows the trend in atomic-ion size and the trend in repulsion between the orbitals of the atomic cations and the occupied orbitals of CO(2). Higher-order CO(2) cluster ions with up to four CO(2) ligands also were observed for 24 of the atomic cations while MO(2)(+) dioxide formation by sequential O atom transfer was seen only with Hf(+), Nb(+), Ta(+), and W(+).  相似文献   

18.
Within the diffusion Monte Carlo approach, we have determined the structure of isotopically pure and mixed helium droplets doped with one magnesium atom. For pure (4)He clusters, our results confirm those of Mella et al. [J. Chem. Phys. 123, 054328 (2005)] that the impurity experiences a transition from a surface to a bulk location as the number of helium atoms in the droplet increases. Contrarily, for pure (3)He clusters Mg resides in the bulk of the droplet due to the smaller surface tension of this isotope. Results for mixed droplets are presented. We have also obtained the absorption spectrum of Mg around the 3s3p?(1)P(1) ← 3s(2)?(1)S(0) transition.  相似文献   

19.
Bare vanadium-oxide and -hydroxide cluster cations (V(m)O(n)H(o)+, m = 2-4, n = 1-10, o = 0, 1) were generated by electrospray ionization in order to examine their intrinsic reactivity toward isomeric butenes and small alkanes using mass spectrometric techniques. Two of the major reactions described here concern the activation of C-H bonds of the alkene/alkane substrates resulting in the transfer of two hydrogen atoms and/or attachment of the dehydrogenated hydrocarbon to the cluster cations; these processes are classified as oxidative dehydrogenation (ODH) and dehydrogenation, respectively. For the dehydrogenation of butene, it evolved as a general trend that high-valent clusters prefer ODH resulting in the addition of two hydrogen atoms to the cluster concomitant with elimination of neutral butadiene, whereas low-valent clusters tend to add the diene with parallel loss of molecular hydrogen. Deuterium labeling experiments suggest the operation of a different reaction mechanism for V2O2(+) and V4O10(+) compared to the other cluster cations investigated, and these two cluster cations also are the only ones of the vanadium-oxide ions examined here that are able to dehydrogenate small alkanes. The kinetic isotope effects observed experimentally imply an electron transfer mechanism for the ion-molecule reactions of the alkanes with V4O10(+).  相似文献   

20.
Reported here is a study of the effects of liquid helium cooling on the fragmentation of ions formed by electron impact mass ionization. The molecules of interest are picked up by the helium nanodroplets as they pass through a low pressure oven. Electron impact ionization of a helium atom in the droplet is followed by resonant charge transfer to neighboring helium atoms. When the charge is transferred to the target molecule, the difference in the ionization potentials between helium and the molecule results in the formation of a vibrationally hot ion. In isolation, the hot parent ion would undergo subsequent fragmentation. On the other hand, if the cooling due to the helium is fast enough, the parent ion will be actively cooled before fragmentation occurs. The target molecule used in the present study is triphenylmethanol (TPM), an important species in synthetic chemistry, used to sterically protect hydroxyl groups. Threshold PhotoElectron PhotoIon COincidence (TPEPICO) experiments are also reported for gas-phase TPM to help quantify the ion energetics resulting from the cooling effects of the helium droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号