首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption, initial stages of film growth, and transformation of an adlayer of C60 molecules on a (100) Mo surface upon heating are studied under ultrahigh-vacuum conditions. It is shown that the C60 molecules remain intact in the adsorbed state up to 760 K. Layer-by-layer growth of a fullerite film is observed at room temperature, while tower-shaped crystallites grow up from a loosely packed monolayer with an approximate concentration of C60 molecules equal to (1.3±0.2)×1014 molecules · cm−2 at 500–600 K. In the latter case the percentage of the surface occupied by them depends on the temperature and the impinging flux density of fullerene molecules, but after a certain stationary value has been achieved, it scarcely depends on the exposure time. Zh. Tekh. Fiz. 69, 117–122 (November 1999)  相似文献   

2.
The results of scanning tunneling microscopy (STM) investigation of controllable growth of C60 adsorption on a Bi(0001)/Si(111) surface are reported. With the use of UHV STM, it has been shown that the most favorable sites for the initial stage of C60 adsorption are the double steps and domain boundaries. At ∼1 monolayer C60 coverage, the modulation pattern caused by the epitaxial relation between C60 and Bi unit cells has been observed. An increase in the C60 coverage up to several monolayers results in the formation of a highly crystalline molecular film. The text was submitted by the authors in English.  相似文献   

3.
A Monte Carlo molecular simulation study is presented on the adsorption and growth of C60 films on the surface of the (1 1 0) face of rutile. Simulations are performed for a temperature of 600 K using atomistic models both for the fullerene molecules and the TiO2 surface. It is found in this work that C60 is adsorbed preferably in an ordered arrangement along the surface depressions over the exposed undercoordinated Ti cations. At low densities adsorption occurs preferably at alternate rows, with locations in consecutive rows being occupied appreciably only at higher C60 densities. At low densities, the fullerene molecules tend to aggregate into islands in the surface plane. Additional layers of C60 form only as the density increases, and do so before a monolayer is completed in all consecutive rows. Full monolayer capacity obtained at the highest densities is about 0.9 C60 molecules per nm2, but this is only achieved by completing the packing of molecules in interstices at a slightly upper level. The fraction of the molecules that lie closest to the surface only amounts to 0.6 molecules per nm2.  相似文献   

4.
It is shown that, contrary to all previously studied systems, heating to ~800 K in the C60? TaS2 monolayer-Ta(100) adsorption system leads to the complete removal of the deposited fullerene molecules. A model is proposed that explains the observed phenomenon by a very weak nonchemisorption interaction between the C60 molecules and the valence-saturated surface of tantalum disulfide that forms layered crystals with van der Waals interaction between layers.  相似文献   

5.
The structure transformation occurring in fullerene film under bombardment by 50 keV C60+ cluster ions is reported. The Raman spectra of the irradiated C60 films reveal a new peak rising at 1458 cm−1 with an increase in the ion fluence. This feature of the Raman spectra suggests linear polymerization of solid C60 induced by the cluster ion impacts. The aligned C60 polymeric chains composing about 5–10 fullerene molecules have been distinguished on the film surface after the high-fluence irradiation using atomic force microscopy (AFM). The surface profiling analysis of the irradiated films has revealed pronounced sputtering during the treatment. The obtained results indicate that the C60 polymerization occurs in a deep layer situated more than 40 nm below the film surface. The deep location of the C60 polymeric phase indirectly confirms the dominant role of shock waves in the detected C60 phase transformation.  相似文献   

6.
Molecular-dynamics simulations (MDSs) and ab initiocalculations are used to investigate the adsorption behavior of C60 molecules on a clean dimer-reconstructed (100)(2×1) diamond surface. C60 molecules have some probability to be adsorbed on the diamond surface at low incident energy (6∼45 eV). Electron-density contours show strong chemical interaction between C60 molecules and the substrate surface. The adsorption property depends strongly on the incident energy and the impacting point. An incident energy of 18 eV may be an appropriate energy to grow a sub-monolayer or monolayer C60 film on a clean C(100)(2×1) surface at room temperature. Received: 5 July 2000 / Accepted: 17 October 2000 / Published online: 28 February 2001  相似文献   

7.
The current work is dedicated to investigation of the interaction between self-assembled polar molecules of fullerene fluoride C60F18 with the chemically active surface Ni(100) under radiation and heat treatments. X-ray photoelectron spectroscopy is used in combination with quantum-chemical simulation. For the first time, the transformation of an as-deposited dielectric continuous 2D thin film to a 3D island-type assembly with molecular ordering within the islands is shown to take place. The degree of coverage of the Ni surface by C60F18 islands (0.6–0.7) and their height (~6 nm) are estimated. Quantum-chemical simulation shows that the chemisorption energy of the C60F18 molecule on the Ni surface equals ~6.6 eV and fluorine atoms are located at a distance of 1.9 Å above the Ni surface. The results of the investigation provide an opportunity to create nanoscale ordered structures with local changes in the work function.  相似文献   

8.
A (O2) x C60 sample with a high content of oxygen (x ≥ 0.4) and free of technological solvent impurities was obtained by precipitation from solution. For the first time, the results of the determination of the x coefficients using 13C NMR and elemental analysis were compared. It was shown by Raman spectroscopy, mass spectrometry, and NMR that the inclusion of oxygen into fullerite was accompanied by a decrease in the frequency of O=O stretching vibrations by no less than 12 cm−1 compared with gaseous O2. Nevertheless, oxygen exists in the molecular form in (O2)0.4C60 and is released in the form of O2 as the sample is heated to 373 K. The number of oxygen molecules occupying octahedral pores closets to the fullerene molecule takes on all the possible values, from 0 to 6. At room temperature, the (O2) x C60 sample lost oxygen much more slowly than similar products prepared by diffusion saturation of pure fullerite with oxygen.  相似文献   

9.
This paper discusses the results of calorimetric studies of the 1D C60 (orthorhombic) and 2D C60 (tetragonal and rhombohedral) fullerites, as well as of the graphite-like polyfullerite, which are produced from a starting C60 fullerite subjected to a pressure of 1–8 GPa at temperatures ranging from 300 to 1270 K. The analysis is made primarily of the C p 0 heat capacity measurements performed in adiabatic calorimeters in the 5-to 350-K range.  相似文献   

10.
The dynamics of the adsorption and evolution of fluorinated C60F18 fullerene molecules on the Cu(001) surface are studied by real-time ultra-high vacuum scanning tunneling microscopy. Fluorinated fullerene molecules are shown to decompose with time on the Cu(001) surface transforming to C60 molecules. The decay rate depends on the initial molecular coverage. The rapid decay of fluorinated fullerene molecules is observed when the coverage is no higher than 0.2 single layers. As a result, two-dimensional islands consisting of pure C60 molecules are formed on the Cu(001) surface. 2D islands consisting of fluorinated fullerene molecules are formed when the initial molecular coverage is higher than 0.5 single layers. The molecules inside these islands also tend to decompose with time. It is found experimentally that fluorine atoms are removed completely from the initial C60F18 molecules adsorbed on the Cu(001) surface after 250 h when the initial molecular coverage is 0.6 single layers.  相似文献   

11.
The suppression of plasticity sensitivity of a C60 fullerite to the action of a magnetic field is revealed. It is found that the C60 fullerite undergoes temporary softening due to irradiation with ultralow (<0.1 cGy) doses of β and γ radiation.  相似文献   

12.
A new magnetic material, C60 fullerite powder doped by magnetite (Fe3O4) nanoparticles, is obtained by heating a mixture of fullerite and iron(III) acetylacetonate. It is shown that the material offers superparamagnetic properties. Surface bonding between the nanoparticles and the fullerite is established.  相似文献   

13.
The kinetics of the sorption and subsequent desorption of gaseous 3He in a C60 fullerite powder has been studied in the temperature range of 2–292 K. The temperature dependences of the diffusion coefficients of 3He and 4He impurities in fullerite have been plotted using the measured characteristic times of filling of octahedral and tetrahedral interstices, as well as previous data. These temperature dependences of the diffusion coefficients of 3He and 4He impurities in fullerite are qualitatively similar. A decrease in the temperature from 292 to 79 K is accompanied by a decrease in the diffusion coefficients, which corresponds to the dominance of the thermally activated diffusion of helium isotopes in fullerite. A further decrease in the temperature to 8–10 K leads to an increase in the diffusion coefficients by more than an order of magnitude. The diffusion coefficients of 3He and 4He are independent of the temperature below 8 K, indicating the tunnel character of the diffusion of helium in C60 fullerite. The isotope effect is manifested in the difference between the absolute values of the diffusion coefficients of 3He and 4He atoms at the same temperatures.  相似文献   

14.
The morphology and atomic structures of C60 fullerene films on a Bi(0001)/Si(111)-7 × 7 surface and adsorption of fluorofullerene C60F x molecules on a Si(111)-7 × 7 surface have been studied by scanning tunneling microscopy/spectroscopy and low-energy electron microscopy under ultra high-vacuum conditions. It has been shown that initial nucleation of C60 islands on the surface of an epitaxial Bi film occurs on double steps and domain boundaries, while tunnel spectra do not exhibit any significant charge transfer to the lowest unoccupied molecular orbital states. Fluorofullerene molecules allow local (at the nanoscale level) modification of Si surface through local etching.  相似文献   

15.
This paper reports on the results of complex investigations into the structural, thermodynamic, and dilatometric properties of the C60 dimerized phase prepared under compression of a C60 fullerite at a pressure up to 8 GPa and a temperature of 290 K. It is demonstrated that the dimerized phase has a face-centered cubic structure with a lattice parameter a=14.02±0.05 Å. The dimeric structure of the studied sample is confirmed by x-ray diffraction analysis. According to the dilatometric data, the volume jump observed in the vicinity of the orientational transition for the dimerized phase is estimated to be approximately 30 times less than that for the C60 fullerite. The temperature dependence of the heat capacity of the (C60)2 crystalline dimer is examined using precision adiabatic vacuum calorimetry under normal pressure in the temperature range from T → 0 K to 340 K. The results obtained are used in the calculations of thermodynamic functions, namely, the heat capacity C p 0 (T), the enthalpy H0(T)-H0(0), the entropy S0(T), and the Gibbs function G0(T)-H0(0). The fractal dimension D is determined as a function of the heat capacity. The standard entropy of the formation of the (C60)2 crystalline dimer from a simple compound (graphite) at T=298.15 K and normal pressure is calculated.  相似文献   

16.
It is found that, under certain conditions, C60 fullerite crystals can be cleaved along cleavage planes that are close-packed planes of the {111} type. Rigid gas-phase grown crystals exhibit good cleavage properties. In experiments with active compressive deformation, these crystals showed a high yield point τy = 2.65 MPa, a “parabolic” stress-strain curve, and brittle fracture after attaining a shear strain of about 8%. The fracture surface was clearly seen to have fragments parallel to the (111) plane. Typical microstructures observed in the cleavage plane are discussed: crystallographic cleavage steps, an indentation pattern, and a dislocation prick rosette. The fact that the activation volume V ? 60b3 is small (b is the Burgers vector of a dislocation) and strain-independent indicates the Peierls character of fullerite deformation or dislocation drag in a dense network of local defects.  相似文献   

17.
The effect of oxygen and iodine on the optical and magnetic properties of fullerite C60 is studied by luminescence and EPR spectroscopy within widely varied experimental conditions (temperature of the medium, oxygen or buffer gas pressure, concentration of iodine vapor). It is demonstrated that the efficiency of the singlet oxygen formation when a fullerene sample is irradiated by a neodymium laser at a wavelength of 532 nm and the amplitude of the EPR signal emitted from the unirradiated sample are strongly affected by the concentrations of both oxygen and iodine vapor sorbed by the fullerene sample, as well as by its surface temperature. The spin-spin and spin-lattice relaxation times of paramagnetic centers in fullerite samples studied in the presence of molecular oxygen are determined by the method of microwave radiation absorption saturation.  相似文献   

18.
This paper deals with a new type of SiC bonding where silicon atom seems to bridge C60 molecules. We have studied films obtained by deposition of (C60)nSim clusters prepared in a laser vaporization source. Prior deposition, free ionized clusters were studied in a time-of-flight mass spectrometer. Mixed clusters (C60)nSim were clearly observed. Abundance and photofragmentation mass spectroscopies revealed the relatively high stability of the (C60)nSi n + , (C60)nSi n - 1 + and (C60)nSi n - 2 + species. This observation is in favor of the arrangement of these complexes as polymers where the C60 cages may be bridged by a silicon atom. Free neutral clusters are then deposited onto substrate making up a nanogranular thin film ( 100 nm). The film is probed by Auger and X-ray photoemission spectroscopies, but above all by surface enhanced Raman scattering. The results suggest an unusual chemical bonding between silicon and carbon and the environment of the silicon atom is expected to be totally different from the sp3 lattice: ten or twelve carbon neighbors might surround silicon atom. The bonding is discussed to the light of the so-called fullerene polymerization as observed for pure fullerite upon laser irradiation. This opens a new route for bridging C60 molecules together with an appreciable energy bonding, since the usual van der Waals bonding in fullerite could be replaced by an ionocovalent bond. Such an assumption must be checked in the future by XAS and EXAFS experiments. Received 15 November 2000  相似文献   

19.
The morphology and atomic structure of C60 fullerene films on the Bi(0001)/Si(111)?7 × 7 surface with different coverages have been studied by scanning tunneling microscopy and spectroscopy and low-energy electron microscopy in high vacuum. It is shown that the most favorable sites for nucleation of C60 islands are double steps and domain boundaries on the surface of epitaxial Bi film.  相似文献   

20.
Intramolecular contrast of C60 molecules has been observed by scanning tunneling microscopy at 4.5 K on a C60 fullerite thin film sample. This result provides strong evidence for the freezing of the rotational motion of C60 molecules at low temperature as recently proposed by refinement analysis of neutron diffraction data. Different intramolecular patterns are observed. Interpretation of these patterns is suggested by assigning them to carbon ring structures of the C60 molecules in various orientations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号