首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This very paper is focusing on the investigation of porous silicon preparation with n-type silicon wafer by means of electrochemical anodization in the dark and, particularly, on its stable ultraviolet photoluminescence emission. A lateral electrical potential was applied, for this purpose, on silicon wafers, driving the electrons away and letting holes appear on the surface of the silicon wafer to enhance the electrochemical etching process. Characterizations have been made with scanning electronic microscope, fluorescence spectrophotometer and Fourier transform infrared spectroscope. An ultraviolet photoluminescence emission of 370 nm is found in the as-prepared n-type porous silicon, which seems to be well associated with the formation of oxygen-related species (twofold coordinated silicon defect) during the anodic oxidation. The result characterized by photo-bleaching performance indicates that the ultraviolet photoluminescence emission is so stable—only 7% reduction within 3600 s. Meanwhile the morphology of as-prepared n-type porous silicon is investigated.  相似文献   

2.
3.
We have prepared various porous silicon (PS) structures with different surface conditions (any combination of oxidation, carbonization as well as thermal annealing) to increase the intensity of photoluminescence (PL) spectrum in the visible range. Strong white light (similar to day-light) emission was achieved by carrying out thermal annealing at 1100 °C after surface modification with 1-decene of anodic oxidized PS structures. Temperature-dependent PL measurements were first performed by gradually increasing the sample temperature from 10 to 300 K inside a cryostat. Then, we analyzed the measured spectrum of all prepared samples. After the analysis, we note that throughout entire measured spectrum, only two main peaks corresponding to blue and green-orange emission lines (which can be interpreted by quantum size effect and/or configuration coordinate model) were seem to be predominant for all temperature range. To further reveal and analysis these peaks, finally, measured data were inputted into the formula of activation energy of thermal excitation. We found that activation energies of blue and green-orange lines were approximately 49.3 and 44.6 meV, respectively.  相似文献   

4.
5.
Results of studies of the photoluminescence of porous silicon with different prehistories have revealed the mechanism and nature of the instability of the luminescence properties of freshly prepared samples. It was established that the initial quenching and subsequent rise of the photoluminescence is attributable to the intermediate formation of silicon monoxide (photoluminescence degradation) and subsequent additional oxidation to form SiO2 (photoluminescence rise). Ultraviolet laser irradiation accelerates this process by a factor of 200–250 compared with passive storage of the samples in air. Plasma-chemical treatment in an oxygen environment merely results in a subsequent rise in the photoluminescence as a result of the formation of monoxide on the porous silicon surface. A kinetic model is proposed for this process. Zh. Tekh. Fiz. 69, 135–137 (June 1999)  相似文献   

6.
7.
韩力  卢杰  李莉 《物理实验》2005,25(4):15-16
利用时间延迟光谱技术测量了多孔硅的发光光谱. 实验结果表明,多孔硅的发光是复杂的动力学发光弛豫过程,时间延迟光谱测量技术在研究复杂动力学发光过程方面比稳态光谱测量方法更有效.  相似文献   

8.
稀土掺杂多孔硅的蓝光发射   总被引:4,自引:1,他引:4       下载免费PDF全文
关键词:  相似文献   

9.
Measurements of emission spectra, excitation spectra, intensity dependence of the luminescence, decay of the luminescence, and temperature dependence of the luminescence in ZnO are reported. The results for the emission at 1·70 eV, with the exception of the decay of the luminescence, were found to be similar to those of the yellow (2·02 eV) emission band in ZnO. Both bands could be excited at the band edge and directly, the intensity of both bands was found to be linear with excitation strength and the asymptotic regions of the temperature dependence of both bands could be approximated by exponential functions. It is proposed that the luminescent transition is an electron transition from the edge of the conduction band to a hole trapped in the bulk at 1·60 eV above the edge of the valence band, and that the luminescence center is an unassociated acceptor-like center.  相似文献   

10.
11.
The visible luminescence caused by anodic oxidation of p-type porous silicon has been studied. It is shown that similar luminescence can be observed in n-type material by illumination with near-infrared light. Addition of a suitable reducing agent to the electrolyte solution can both suppress the oxidation of the porous layer and quench its luminescence. These results confirm a previously suggested mechanism, in which the capture of a valence band hole in a surface bond of the porous semiconductor gives rise to a surface state intermediate capable of thermally injecting an electron into the conduction band.  相似文献   

12.
13.
Porous silicon (PS) is studied by stepwise peeling of the surface layer to clarify the non-uniformity in the photoluminescence (PL) and correlate it with the in-depth chemical bonding and structure of the 30 μm thick layer. The PL intensity grows by an order of magnitude after the peeling off of the first 10 μm and decreases five times in the next 5 μm while the peak maximum position shifts from 730 to 800 nm. X-ray photoelectron spectroscopy (XPS) measurements show that Si–Si and Si–O bonds are present both on the surface and below, and the preferential oxidation state of silicon changes from 3+ and 4+ on the surface to 1+ and 2+ below 10 μm. Using Raman spectroscopy silicon nanocrystals are shown to exist. Their mean size can be estimated at about 3 nm. These results show that the strongest PL comes from a region in the PS layer where silicon nanocrystallites are surrounded by oxides with a low level of oxidation and not from the strongly oxidized surface layer.  相似文献   

14.
Single-mode, highly directional and stable photoluminescence (PL) emission has been achieved from porous silicon microcavities (PSMs) fabricated by pulsed electrochemical etching. The full width at half maximum (FWHM) of the narrow PL peak available from a freshly etched PSM is about 9 nm. The emission concentrates in a cone of 10° around the normal of the sample, with a further reduced FWHM of ∼5.6 nm under angle-resolved measurements. Only the resonant peak is present in such angle-resolved PL spectra. No peak broadening is found upon exposure of the freshly prepared PSM to a He-Cd laser beam, and the peak becomes somewhat narrower (∼5.4 nm) after the PSM has been stored in an ambient environment for two weeks. At optimized etching parameters, even a 4-nm FWHM is achievable for the freshly etched PSM. In addition, scanning electron microscopy (SEM) plane-view images reveal that the single layer porous Si formed by pulsed current etching is more uniform and flatter than that formed by direct current (dc) etching, demonstrated by the well-distributed circular pores with small size in the former in comparison with the irregular interlinking pores in the latter. The SEM cross-section images show the existence of oriented Si columns of 10 nm diameter along the etching direction within the active layer, good reproducibility and flat interfaces. It is thus concluded that pulsed current etching is superior to dc etching in obtaining flat interfaces within the distributed Bragg reflectors because of its minor lateral etching. Received: 7 March 2001 / Accepted: 23 July 2001 / Published online: 30 October 2001  相似文献   

15.
A new method has been developed to improve the photoluminescence intensity of porous silicon (PS), which is first time that LiBr is used for passivation of PS. Immersion of the PS in a LiBr solution, followed by a thermal treatment at 100 °C for 30 min under nitrogen, leads to a nine fold increase in the intensity of the photoluminescence. The atomic force microscope (AFM) shows an increase of the nanoparticle dimension compared to the initial dimension of the PS nanostructure. The LiBr covers the nanoparticles of silicon without changing the wavelength distribution of the optical excitation and emission spectra. Moreover, a significant decrease of reflectivity was observed for the wavelength in the range of 350-500 nm.  相似文献   

16.
The influence of natural aging on the photoluminescence intensity and the position of a photolu-minescence peak in n-type por-Si (por-Si) is studied. The variation of the phase composition and the relative content of the amorphous and oxide phases of silicon in por-Si during aging is determined by fitting simulated spectra to experimental ultrasoft Si L 2,3 X-ray emission spectra using reference spectra.  相似文献   

17.
The photoluminescence (PL) of porous silicon films has been investigated as a function of the amount of liquid crystal molecules that are infiltrated into the constricted geometry of the porous silicon films. A typical nematic liquid crystal 4-pentyl-4′-cyanobiphenyl was employed in our experiment as the filler to modify the PL of porous silicon. It is found that the originally red PL of porous silicon films can be tuned to blue by simply adjusting the amount of liquid crystal molecules in the microchannels of the porous films. The chromaticity coordinates are calculated for the recorded PL spectra. The mechanism of the tunable PL is discussed. Our results have demonstrated that the luminescent properties of porous silicon films can be efficiently tuned by liquid crystal infiltration.  相似文献   

18.
We present results on the photoluminescence (PL) properties of porous silicon (PS) as a function of time. Stabilization of PL from PS has been achieved by replacing silicon-hydrogen bonds terminating the surface with more stable silicon-carbon bonds. The composition of the PS surface was monitored by transmission Fourier transform infrared (FTIR) spectroscopy at intervals of 1 month in ageing time up to 1 year. The position of the maximum PL peak wavelength oscillates between a blue-shift and a red-shift in the 615-660 nm range with time.  相似文献   

19.
Photoluminescence of porous silicon (PS) is instable due perhaps to the nanostructure modification in air. The controllable structure modification processes on the as-prepared PS were conducted by thermal oxidization and/or HF etching. The PL spectra taken from thermally oxidized PS showed a stable photoluminescence emission of 355 nm. The photoluminescence emission taken from both of PS and oxidized porous silicon (OPS) samples etched with HF were instable, which can be reversibly recovered by the HF etching procedure. The mechanism of UV photoluminescence is discussed and attributed to the transformation of luminescence centers from oxygen deficient defects to the oxygen excess defects in the thermal oxidized PS sample and surface absorbed silanol groups on PS samples during the chemical etched procedure.  相似文献   

20.
Porous Si1−xGex (PSiGe) layers with efficient room temperature visible photoluminescence (PL) were elaborated by anodical etching from p-type doped epitaxial layers with Ge contents from 5 to 30%. The luminescence is characterised by a broad PL band centred at 1.8 eV. Time resolved photoluminescence decay is studied in porous silicon germanium as a function of germanium content, temperature, emission energies and surface passivation. The PL decay line shape is well described by a stretched exponential in all cases. The effective lifetime at low temperature in as prepared porous Si1−xGex is 400 μs, i.e. an order of magnitude less than in porous silicon. After the formation of a 20 Å thick oxide surface layer we observe a decrease of the effective lifetime to 20 μs at T=4 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号