首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper,for the purpose of measuring the non-self-centrality extent of non-selfcentered graphs,a novel eccentricity-based invariant,named as non-self-centrality number(NSC number for short),of a graph G is defined as follows:N(G)=∑v_i,v_j∈V(G)|e_i-e_j| where the summation goes over all the unordered pairs of vertices in G and e_i is the eccentricity of vertex v_i in G,whereas the invariant will be called third Zagreb eccentricity index if the summation only goes over the adjacent vertex pairs of graph G.In this paper,we determine the lower and upper bounds on N(G) and characterize the corresponding graphs at which the lower and upper bounds are attained.Finally we propose some attractive research topics for this new invariant of graphs.  相似文献   

2.
In this work, we obtain good upper bounds for the diameter of any graph in terms of its minimum degree and its order, improving a classical theorem due to Erd¨os, Pach, Pollack and Tuza.We use these bounds in order to study hyperbolic graphs(in the Gromov sense). To compute the hyperbolicity constant is an almost intractable problem, thus it is natural to try to bound it in terms of some parameters of the graph. Let H(n, δ_0) be the set of graphs G with n vertices and minimum degree δ_0, and J(n, Δ) be the set of graphs G with n vertices and maximum degree Δ. We study the four following extremal problems on graphs: a(n, δ_0) = min{δ(G) | G ∈ H(n, δ_0)}, b(n, δ_0) = max{δ(G) |G ∈ H(n, δ_0)}, α(n, Δ) = min{δ(G) | G ∈ J(n, Δ)} and β(n, Δ) = max{δ(G) | G ∈ J(n, Δ)}. In particular, we obtain bounds for b(n, δ_0) and we compute the precise value of a(n, δ_0), α(n, Δ) andβ(n, Δ) for all values of n, δ_0 and Δ, respectively.  相似文献   

3.
Let G be a graph with vertex set V(G). For any integer k ≥ 1, a signed total k-dominating function is a function f: V(G) → {?1, 1} satisfying ∑xN(v)f(x) ≥ k for every vV(G), where N(v) is the neighborhood of v. The minimum of the values ∑vV(G)f(v), taken over all signed total k-dominating functions f, is called the signed total k-domination number. In this note we present some new sharp lower bounds on the signed total k-domination number of a graph. Some of our results improve known bounds.  相似文献   

4.
A set S of vertices is independent or stable in a graph G, and we write S ∈ Ind (G), if no two vertices from S are adjacent, and α(G) is the cardinality of an independent set of maximum size, while core(G) denotes the intersection of all maximum independent sets. G is called a König–Egerváry graph if its order equals α(G) + μ(G), where μ(G) denotes the size of a maximum matching. The number def (G) = | V(G) | ?2μ(G) is the deficiency of G. The number \({d(G)=\max\{\left\vert S\right\vert -\left\vert N(S)\right\vert :S\in\mathrm{Ind}(G)\}}\) is the critical difference of G. An independent set A is critical if \({\left\vert A\right\vert -\left\vert N(A)\right\vert =d(G)}\) , where N(S) is the neighborhood of S, and α c (G) denotes the maximum size of a critical independent set. Larson (Eur J Comb 32:294–300, 2011) demonstrated that G is a König–Egerváry graph if and only if there exists a maximum independent set that is also critical, i.e., α c (G) = α(G). In this paper we prove that: (i) \({d(G)=\left \vert \mathrm{core}(G) \right \vert -\left \vert N (\mathrm{core}(G))\right\vert =\alpha(G)-\mu(G)=def \left(G\right)}\) holds for every König–Egerváry graph G; (ii) G is König–Egerváry graph if and only if each maximum independent set of G is critical.  相似文献   

5.
A graph G is vertex pancyclic if for each vertex \({v \in V(G)}\) , and for each integer k with 3 ≤ k ≤ |V(G)|, G has a k-cycle C k such that \({v \in V(C_k)}\) . Let s ≥ 0 be an integer. If the removal of at most s vertices in G results in a vertex pancyclic graph, we say G is an s-vertex pancyclic graph. Let G be a simple connected graph that is not a path, cycle or K 1,3. Let l(G) = max{m : G has a divalent path of length m that is not both of length 2 and in a K 3}, where a divalent path in G is a path whose interval vertices have degree two in G. The s-vertex pancyclic index of G, written vp s (G), is the least nonnegative integer m such that L m (G) is s-vertex pancyclic. We show that for a given integer s ≥ 0,
$vp_s(G)\le \left\{\begin{array}{l@{\quad}l}\qquad\quad\quad\,\,\,\,\,\,\, l(G)+s+1: \quad {\rm if} \,\, 0 \le s \le 4 \\ l(G)+\lceil {\rm log}_2(s-2) \rceil+4: \quad {\rm if} \,\, s \ge 5 \end{array}\right.$
And we improve the bound for essentially 3-edge-connected graphs. The lower bound and whether the upper bound is sharp are also discussed.
  相似文献   

6.
We consider the distance graph G(n, r, s), whose vertices can be identified with r-element subsets of the set {1, 2,..., n}, two arbitrary vertices being joined by an edge if and only if the cardinality of the intersection of the corresponding subsets is s. For s = 0, such graphs are known as Kneser graphs. These graphs are closely related to the Erd?s–Ko–Rado problem and also play an important role in combinatorial geometry and coding theory. We study some properties of random subgraphs of G(n, r, s) in the Erd?s–Rényi model, in which every edge occurs in the subgraph with some given probability p independently of the other edges. We find the asymptotics of the independence number of a random subgraph of G(n, r, s) for the case of constant r and s. The independence number of a random subgraph is Θ(log2n) times as large as that of the graph G(n, r, s) itself for r ≤ 2s + 1, while for r > 2s + 1 one has asymptotic stability: the two independence numbers asymptotically coincide.  相似文献   

7.
A stable set in a graph G is a set of pairwise non-adjacent vertices, and the stability number α(G) is the maximum size of a stable set in G. The independence polynomial of G is
$I(G; x) = s_{0}+s_{1}x+s_{2}x^{2}+\cdots+s_{\alpha}x^{\alpha},\alpha=\alpha(G),$
where s k equals the number of stable sets of cardinality k in G (Gutman and Harary [11]).
Unlike the matching polynomial, the independence polynomial of a graph can have non-real roots. It is known that the polynomial I(G; x) has only real roots whenever (a) α(G) = 2 (Brown et al. [4]), (b) G is claw-free (Chudnowsky and Symour [6]). Brown et al. [3] proved that given a well-covered graph G, one can define a well-covered graph H such that G is a subgraph of H, α(G) = α(H), and I(H; x) has all its roots simple and real.In this paper, we show that starting from a graph G whose I(G; x) has only real roots, one can build an infinite family of graphs, some being well-covered, whose independence polynomials have only real roots (and, sometimes, are also palindromic).  相似文献   

8.
An edge-coloring of a graph G is an assignment of colors to all the edges of G. A g c -coloring of a graph G is an edge-coloring of G such that each color appears at each vertex at least g(v) times. The maximum integer k such that G has a g c -coloring with k colors is called the g c -chromatic index of G and denoted by \(\chi\prime_{g_{c}}\)(G). In this paper, we extend a result on edge-covering coloring of Zhang and Liu in 2011, and give a new sufficient condition for a simple graph G to satisfy \(\chi\prime_{g_{c}}\)(G) = δ g (G), where \(\delta_{g}\left(G\right) = min_{v\epsilon V (G)}\left\{\lfloor\frac{d\left(v\right)}{g\left(v\right)}\rfloor\right\}\).  相似文献   

9.
A graph is said to be claw-free if it does not contain an induced subgraph isomorphic to K1,3. Let s and k be two integers with 0 ≤ sk and let G be a claw-free graph of order n. In this paper, we investigate clique partition problems in claw-free graphs. It is proved that if n ≥ 3s+4(k?s) and d(x)+d(y) ≥ n?2s+2k+1 for any pair of non-adjacent vertices x, y of G, then G contains s disjoint K3s and k ? s disjoint K4s such that all of them are disjoint. Moreover, the degree condition is sharp in some cases.  相似文献   

10.
We consider even factors with a bounded number of components in the n-times iterated line graphs L n (G). We present a characterization of a simple graph G such that L n (G) has an even factor with at most k components, based on the existence of a certain type of subgraphs in G. Moreover, we use this result to give some upper bounds for the minimum number of components of even factors in L n (G) and also show that the minimum number of components of even factors in L n (G) is stable under the closure operation on a claw-free graph G, which extends some known results. Our results show that it seems to be NP-hard to determine the minimum number of components of even factors of iterated line graphs. We also propose some problems for further research.  相似文献   

11.
Token Graphs     
For a graph G and integer k ≥ 1, we define the token graph F k (G) to be the graph with vertex set all k-subsets of V(G), where two vertices are adjacent in F k (G) whenever their symmetric difference is a pair of adjacent vertices in G. Thus vertices of F k (G) correspond to configurations of k indistinguishable tokens placed at distinct vertices of G, where two configurations are adjacent whenever one configuration can be reached from the other by moving one token along an edge from its current position to an unoccupied vertex. This paper introduces token graphs and studies some of their properties including: connectivity, diameter, cliques, chromatic number, Hamiltonian paths, and Cartesian products of token graphs.  相似文献   

12.
A proper edge coloring of a graph G is said to be acyclic if there is no bicolored cycle in G.The acyclic edge chromatic number of G,denoted byχ′a(G),is the smallest number of colors in an acyclic edge coloring of G.Let G be a planar graph with maximum degree.In this paper,we show thatχ′a(G)+2,if G has no adjacent i-and j-cycles for any i,j∈{3,4,5},which implies a result of Hou,Liu and Wu(2012);andχ′a(G)+3,if G has no adjacent i-and j-cycles for any i,j∈{3,4,6}.  相似文献   

13.
Let α be an automorphism of a finite group G. For a positive integer n, let E G,n (α) be the subgroup generated by all commutators [...[[x,α],α],…,α] in the semidirect product G 〈α〉 over xG, where α is repeated n times. By Baer’s theorem, if E G,n (α)=1, then the commutator subgroup [G,α] is nilpotent. We generalize this theorem in terms of certain length parameters of E G,n (α). For soluble G we prove that if, for some n, the Fitting height of E G,n (α) is equal to k, then the Fitting height of [G,α] is at most k + 1. For nonsoluble G the results are in terms of the nonsoluble length and generalized Fitting height. The generalized Fitting height h*(H) of a finite group H is the least number h such that F h* (H) = H, where F 0* (H) = 1, and F i+1* (H) is the inverse image of the generalized Fitting subgroup F*(H/F i *(H)). Let m be the number of prime factors of the order |α| counting multiplicities. It is proved that if, for some n, the generalized Fitting height E G,n (α) of is equal to k, then the generalized Fitting height of [G,α] is bounded in terms of k and m. The nonsoluble length λ(H) of a finite group H is defined as the minimum number of nonsoluble factors in a normal series each of whose factors either is soluble or is a direct product of nonabelian simple groups. It is proved that if λE G,n (α)= k, then the nonsoluble length of [G,α] is bounded in terms of k and m. We also state conjectures of stronger results independent of m and show that these conjectures reduce to a certain question about automorphisms of direct products of finite simple groups.  相似文献   

14.
Let γ(G) and i(G) be the domination number and the independent domination number of G, respectively. Rad and Volkmann posted a conjecture that i(G)/γ(G) ≤ Δ(G)/2 for any graph G, where Δ(G) is its maximum degree (see N. J. Rad, L. Volkmann (2013)). In this work, we verify the conjecture for bipartite graphs. Several graph classes attaining the extremal bound and graphs containing odd cycles with the ratio larger than Δ(G)/2 are provided as well.  相似文献   

15.
A subset S ? V in a graph G = (V,E) is a total [1, 2]-set if, for every vertex \( \upsilon \in V, 1 \leq\mid N (\upsilon)\cap S\mid\leq \). The minimum cardinality of a total [1, 2]-set of G is called the total [1, 2]-domination number, denoted by γt[1,2](G).We establish two sharp upper bounds on the total [1,2]-domination number of a graph G in terms of its order and minimum degree, and characterize the corresponding extremal graphs achieving these bounds. Moreover, we give some sufficient conditions for a graph without total [1, 2]-set and for a graph with the same total [1, 2]-domination number, [1, 2]-domination number and domination number.  相似文献   

16.
Let G be a finite group and let ω(G) denote the set of the element orders of G. For the simple group PSL5(5) we prove that if G is a finite group with ω(G) = ω(PSL5(5)), then either G ? PSL5(5) or G ? PSL5(5): 〈θ〉 where θ is a graph automorphism of PSL5(5) of order 2.  相似文献   

17.
Let G be a finite group and NA(G) denote the number of conjugacy classes of all nonabelian subgroups of non-prime-power order of G. The Symbol π(G) denote the set of the prime divisors of |G|. In this paper we establish lower bounds on NA(G). In fact, we show that if G is a finite solvable group, then NA(G) = 0 or NA(G) ≥ 2|π(G)|?2, and if G is non-solvable, then NA(G) ≥ |π(G)| + 1. Both lower bounds are best possible.  相似文献   

18.
While solving a question on the list coloring of planar graphs, Dvo?ák and Postle introduced the new notion of DP-coloring (they called it correspondence coloring). A DP-coloring of a graph G reduces the problem of finding a coloring of G from a given list L to the problem of finding a “large” independent set in the auxiliary graph H(G,L) with vertex set {(v, c): vV (G) and cL(v)}. It is similar to the old reduction by Plesnevi? and Vizing of the k-coloring problem to the problem of finding an independent set of size |V(G)| in the Cartesian product GK k, but DP-coloring seems more promising and useful than the Plesnevi?–Vizing reduction. Some properties of the DP-chromatic number χ DP (G) resemble the properties of the list chromatic number χ l (G) but some differ quite a lot. It is always the case that χ DP (G) ≥ χ l (G). The goal of this note is to introduce DP-colorings for multigraphs and to prove for them an analog of the result of Borodin and Erd?s–Rubin–Taylor characterizing the multigraphs that do not admit DP-colorings from some DP-degree-lists. This characterization yields an analog of Gallai’s Theorem on the minimum number of edges in n-vertex graphs critical with respect to DP-coloring.  相似文献   

19.
Suppose that A is a real symmetric matrix of order n. Denote by mA(0) the nullity of A. For a nonempty subset α of {1, 2,..., n}, let A(α) be the principal submatrix of A obtained from A by deleting the rows and columns indexed by α. When mA(α)(0) = mA(0)+|α|, we call α a P-set of A. It is known that every P-set of A contains at most ?n/2? elements. The graphs of even order for which one can find a matrix attaining this bound are now completely characterized. However, the odd case turned out to be more difficult to tackle. As a first step to the full characterization of these graphs of odd order, we establish some conditions for such graphs G under which there is a real symmetric matrix A whose graph is G and contains a P-set of size (n ? 1)/2.  相似文献   

20.
Let G be a connected graph with vertex set V(G) = {v1, v2,..., v n }. The distance matrix D(G) = (d ij )n×n is the matrix indexed by the vertices of G, where d ij denotes the distance between the vertices v i and v j . Suppose that λ1(D) ≥ λ2(D) ≥... ≥ λ n (D) are the distance spectrum of G. The graph G is said to be determined by its D-spectrum if with respect to the distance matrix D(G), any graph having the same spectrum as G is isomorphic to G. We give the distance characteristic polynomial of some graphs with small diameter, and also prove that these graphs are determined by their D-spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号