首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, Todd has analyzed in detail the primal-dual affine-scaling method for linear programming, which is close to what is implemented in practice, and proved that it may take at leastn 1/3 iterations to improve the initial duality gap by a constant factor. He also showed that this lower bound holds for some polynomial variants of primal-dual interior-point methods, which restrict all iterates to certain neighborhoods of the central path. In this paper, we further extend his result to long-step primal-dual variants that restrict the iterates to a wider neighborhood. This neigh-borhood seems the least restrictive one to guarantee polynomiality for primal-dual path-following methods, and the variants are also even closer to what is implemented in practice.Research supported in part by NSF, AFOSR and ONR through NSF Grant DMS-8920550.This author is supported in part by NSF Grant DDM-9207347. Part of thiw work was done while the author was on a sabbatical leave from the University of Iowa and visiting the Cornell Theory Center, Cornell University, Ithaca, NY 14853, supported in part by the Cornell Center for Applied Mathematics and by the Advanced Computing Research Institute, a unit of the Cornell Theory Center, which receives major funding from the National Science Foundation and IBM Corporation, with additional support from New York State and members of its Corporate Research Institute.  相似文献   

2.
We describe a cutting plane algorithm for solving combinatorial optimization problems. The primal projective standard-form variant of Karmarkar's algorithm for linear programming is applied to the duals of a sequence of linear programming relaxations of the combinatorial optimization problem.Computational facilities provided by the Cornell Computational Optimization Project supported by NSF Grant DMS-8706133 and by the Cornell National Supercomputer Facility. The Cornell National Supercomputer Facility is a resource of the Center for Theory and Simulation in Science and Engineering at Cornell Unversity, which is funded in part by the National Science Foundation, New York State, and the IBM Corporation. The research of both authors was partially supported by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University.Research partially supported by ONR Grant N00014-90-J-1714.Research partially supported by NSF Grant ECS-8602534 and by ONR Contract N00014-87-K-0212.  相似文献   

3.
We present a simplification and generalization of the recent homogeneous and self-dual linear programming (LP) algorithm. The algorithm does not use any Big-M initial point and achieves -iteration complexity, wheren andL are the number of variables and the length of data of the LP problem. It also detects LP infeasibility based on a provable criterion. Its preliminary implementation with a simple predictor and corrector technique results in an efficient computer code in practice. In contrast to other interior-point methods, our code solves NETLIB problems, feasible or infeasible, starting simply fromx=e (primal variables),y=0 (dual variables),z=e (dual slack variables), wheree is the vector of all ones. We describe our computational experience in solving these problems, and compare our results with OB1.60, a state-of-the-art implementation of interior-point algorithms.Research supported in part by NSF Grant DDM-9207347 and by an Iowa College of Business Administration Summer Grant.Part of this work was done while the author was on a sabbatical leave from the University of Iowa and visiting the Cornell Theory Center, Cornell University, Ithaca, NY 14853, USA, supported in part by the Cornell Center for Applied Mathematics and by the Advanced Computing Research Institute, a unit of the Cornell Theory Center, which receives major funding from the National Science Foundation and IBM Corporation, with additional support from New York State and members of its Corporate Research Institute.  相似文献   

4.
Shortest paths algorithms: Theory and experimental evaluation   总被引:40,自引:0,他引:40  
We conduct an extensive computational study of shortest paths algorithms, including some very recent algorithms. We also suggest new algorithms motivated by the experimental results and prove interesting theoretical results suggested by the experimental data. Our computational study is based on several natural problem classes which identify strengths and weaknesses of various algorithms. These problem classes and algorithm implementations form an environment for testing the performance of shortest paths algorithms. The interaction between the experimental evaluation of algorithm behavior and the theoretical analysis of algorithm performance plays an important role in our research. This work was done while Boris V. Cherkassky was visiting Stanford University Computer Science Department and supported by the NSF and Powell Foundation grants mentioned below. Andrew V. Goldberg was supported in part by ONR Young Investigator Award N00014-91-J-1855, NSF Presidential Young Investigator Grant CCR-8858097 with matching funds from AT&T, DEC, and 3M, and a grant from Powell Foundation. Corresponding author. This work was done while Tomasz Radzik was a Postdoctoral Fellow at SORIE, Cornell University, and supported by the National Science Foundation, the Air Force Office of Scientific Research, and the Office of Naval Research, through NSF grant DMS-8920550, and by the Packard Fellowship of éva Tardos.  相似文献   

5.
Summary Reaction-diffusion processes were introduced by Nicolis and Prigogine, and Haken. Existence theorems have been established for most models, but not much is known about ergodic properties. In this paper we study a class of models which have a reversible measure. We show that the stationary distribution is unique and is the limit starting from any initial distribution.The work was begun while the first author was visiting Cornell and supported by the Chinese government. The initial results (for Schlögl's first model) was generalized while the three authors were visiting the Nankai Institute for Mathematics, Tianjin, People's Republic of ChinaPartially supported by the National Science Foundation and the Army Research Office through the Mathematical Sciences Institute at Cornell UniversityPartially supported by NSF grant DMS 86-01800  相似文献   

6.
We consider a new algorithm, an interior-reflective Newton approach, for the problem of minimizing a smooth nonlinear function of many variables, subject to upper and/or lower bounds on some of the variables. This approach generatesstrictly feasible iterates by using a new affine scaling transformation and following piecewise linear paths (reflection paths). The interior-reflective approach does not require identification of an activity set. In this paper we establish that the interior-reflective Newton approach is globally and quadratically convergent. Moreover, we develop a specific example of interior-reflective Newton methods which can be used for large-scale and sparse problems.Research partially supported by the Applied Mathematical Sciences Research Program (KC-04-02) of the Office of Energy Research of the U.S. Department of Energy under grant DE-FG02-86ER25013.A000, and in part by NSF, AFOSR, and ONR through grant DMS-8920550, and by the Advanced Computing Research Institute, a unit of the Cornell Theory Center which receives major funding from the National Science Foundation and IBM Corporation, with additional support from New York State and members of its Corporate Research Institute.Corresponding author.  相似文献   

7.
Motivated by a number of motion-planning questions, we investigate in this paper some general topological and combinatorial properties of the boundary of the union ofn regions bounded by Jordan curves in the plane. We show that, under some fairly weak conditions, a simply connected surface can be constructed that exactly covers this union and whose boundary has combinatorial complexity that is nearly linear, even though the covered region can have quadratic complexity. In the case where our regions are delimited by Jordan acrs in the upper halfplane starting and ending on thex-axis such that any pair of arcs intersect in at most three points, we prove that the total number of subarcs that appear on the boundary of the union is only (n(n)), where(n) is the extremely slowly growing functional inverse of Ackermann's function.The first author is pleased to acknowledge the support of Amoco Fnd. Fac. Dev. Comput. Sci. 1-6-44862 and National Science Foundation Grant CCR-8714565. Work on this paper by the fourth and seventh authors has been supported by Office of Naval Research Grant N00014-87-K-0129, by National Science Foundation Grant NSF-DCR-83-20085, and by grants from the Digital Equipment Corporation and the IBM Corporation. The seventh author in addition wishes to acknowledge support by a research grant from the NCRD—the Israeli National Council for Research and Development. The fifth author would like to acknowledge support in part by NSF grant DMS-8501947. Finally, the eighth author was supported in part by a National Science Foundation Graduate Fellowship.  相似文献   

8.
The complete convergence theorem implies that starting from any initial distribution the one dimensional contact process converges to a limit ast. In this paper we give a necessary and sufficient condition on the initial distribution for the convergence to occur with exponential rapidity.This work was discussed while the authors were visiting the Nankai Mathematics Institute in Tianjin.Partially supported by the National Science Foundation, the Army Research Office through the Mathematical Sciences Institute at Cornell University, and a Guggenheim fellowship.Research supported by the National Science Foundation of China.  相似文献   

9.
The geodesic center of a simple polygon is a point inside the polygon which minimizes the maximum internal distance to any point in the polygon. We present an algorithm which calculates the geodesic center of a simple polygon withn vertices in timeO(n logn).Work on this paper by the first author has been supported by National Science Foundation Grant No. DMS-8501947. Work on this paper by the second author has been supported by Office of Naval Research Grant No. N00014-82-K-0381, National Science Foundation Grant No. NSF-DCR-83-20085, and by grants from the Digital Equipment Corporation, and the IBM Corporation. Part of the work on this paper by the first two authors has been carried out at the Workshop on Movable Separability of Sets at the Bellairs Research Institute of McGill University, Barbados, February 1986. Work on this paper by the third author has been supported by the Fonds zur Förderung der wissenschaftlichen Forschung (FWF), Project S32/01.  相似文献   

10.
We describe a new potential function and a sequence of ellipsoids in the path-following algorithm for convex quadratic programming. Each ellipsoid in the sequence contains all of the optimal primal and dual slack vectors. Furthermore, the volumes of the ellipsoids shrink at the ratio , in comparison to 2(1) in Karmarkar's algorithm and 2(1/n) in the ellipsoid method. We also show how to use these ellipsoids to identify the optimal basis in the course of the algorithm for linear programming.Research supported by The U.S. Army Research Office through The Mathematical Sciences Institute of Cornell University when the author was visiting at Cornell.Research supported in part by National Science Foundation Grant ECS-8602534 and Office of Naval Research Contract N00014-87-K-0212.  相似文献   

11.
LetP andQ be two disjoint simple polygons havingm andn sides, respectively. We present an algorithm which determines whetherQ can be moved by a sequence of translations to a position sufficiently far fromP without colliding withP, and which produces such a motion if it exists. Our algorithm runs in timeO(mn(mn) logm logn) where (k) is the extremely slowly growing inverse Ackermann's function. Since in the worst case (mn) translations may be necessary to separateQ fromP, our algorithm is close to optimal.Work on this paper by the first author has been supported by National Science Foundation Grant No. DMS-8501947. Work on this paper by the second author has been supported by Office of Naval Research Grant No. N00014-82-K-0381, National Science Foundation Grant No. NSP-DCR-83-20085, and by grants from the Digital Equipment Corporation, and the IBM Corporation. Work by the second and third authors has also been supported by a grant from the joint Ramot-Israeli Ministry of Industry Foundation. Part of the work on this paper has been carried out at the Workshop on Movable Separability of Sets at the Bellairs Research Institute of McGill University, Barbados, February 1986.  相似文献   

12.
A mean field limit of the contact process with large range   总被引:2,自引:0,他引:2  
Summary A mean field limit of the contact process is obtained as the rangeM approaches . Fluctuations about the deterministic limit are identified as a Generalized Ornstein Uhlenbeck process.Research supported in part by the Army Research Office through the Mathematical Sciences Institute at Cornell University and by NSF Grant: DMS 8902152  相似文献   

13.
We study path problems in skew-symmetric graphs. These problems generalize the standard graph reachability and shortest path problems. We establish combinatorial solvability criteria and duality relations for the skew-symmetric path problems and use them to design efficient algorithms for these problems. The algorithms presented are competitive with the fastest algorithms for the standard problems.This research was done while the first author was at Stanford University Computer Science Department, supported in part by ONR Office of Naval Research Young Investigator Award N00014-91-J-1855, NSF Presidential Young Investigator Grant CCR-8858097 with matching funds from AT&T, DEC, and 3M, and a grant from Powell Foundation.This research was done while the second author was visiting Stanford University Computer Science Department and supported by the above mentioned NSF and Powell Foundation Grants.  相似文献   

14.
We present several applications of a recent space-partitioning technique of Chazelle, Sharir, and Welzl (Proceedings of the 6th Annual ACM Symposium on Computational Geometry, 1990, pp. 23–33). Our results include efficient algorithms for output-sensitive hidden surface removal, for ray shooting in two and three dimensions, and for constructing spanning trees with low stabbing number.Work on this paper has been supported by DIMACS, an NSF Science and Technology Center, under Grant STC-88-09684. The second author has been supported by Office of Naval Research Grants N00014-89-J-3042 and N00014-90-J-1284, by National Science Foundation Grant CCR-89-01484, and by grants from the U.S.-Israeli Binational Science Foundation, the Fund for Basic Research administered by the Israeli Academy of Sciences, and the G.I.F., the German-Israeli Foundation for Scientific Research and Development.  相似文献   

15.
Summary A diffusion equation approach is investigated for the study of stochastic monotonicity, positive correlations and the preservation of Lipschitz functions. Necessary and sufficient conditions are given for diffusion semigroups to be stochastically monotonic and to preserve the class of positively correlated measures. Applications are given which discuss the shape of the ground state for Schrödinger operators-+V with FKG potentialsV.Research supported by NSF Grant DMS 8807816.Research supported by NSF grant DMS 8701212 and Air Force Office of Scientific Research Contract No. F49620 85C 0144.Written while visiting, Center for Stochastic Processes, University of North Carolina.  相似文献   

16.
On homogeneous and self-dual algorithms for LCP   总被引:3,自引:0,他引:3  
We present some generalizations of a homogeneous and self-dual linear programming (LP) algorithm to solving the monotone linear complementarity problem (LCP). Again, while it achieves the best known interior-point iteration complexity, the algorithm does not need to use any “big-M” number, and it detects LCP infeasibility by generating a certificate. To our knowledge, this is the first interior-point and infeasible-starting algorithm for the LCP with these desired features. Research supported in part by NSF Grant DDM-9207347, the University of Iowa Oberman Fellowship and the Iowa College of Business Administration Summer Grant. Part of this work is done while the author is visiting the Delft Optimization Center at the University of Technology, Delft, Netherlands, supported by the Dutch Organization for Scientific Research (NWO).  相似文献   

17.
We consider-approximation schemes for indefinite quadratic programming. We argue that such an approximation can be found in polynomial time for fixed andt, wheret denotes the number of negative eigenvalues of the quadratic term. Our algorithm is polynomial in 1/ for fixedt, and exponential int for fixed. We next look at the special case of knapsack problems, showing that a more efficient (polynomial int) approximation algorithm exists.Part of this work was done while the author was visiting Sandia National Laboratories, Albuquerque, New Mexico, supported by the U.S. Department of Energy under contract DE-AC04-76DP00789. Part of this work was also supported by the Applied Mathematical Sciences Program (KC-04-02) of the Office of Energy Research of the U.S. Department of Energy under grant DE-FG02-86ER25013.A000 and in part by the National Science Foundation, the Air Force Office of Scientific Research, and the Office of Naval Research, through NSF grant DMS 8920550.  相似文献   

18.
In this paper we consider an augmented Lagrangian method for the minimization of a nonlinear functional in the presence of an equality constraint whose image space is in a Hilbert space, an inequality constraint whose image space is finite dimensional, and an affine inequality constraint whose image space is in an infinite dimensional Hilbert space. We obtain local convergence of this method without imposing strict complementarity conditions when the equality, as well as the inequality constraint with finite dimensional image space are augmented. To the author's knowledge this result even generalizes the convergence results which are known when all spaces are finite dimensional.This research was supported by the Air Force Office of Scientific Research under Grant AFOSR-84-0398 and AFOSR-85-0303, by the National Aeronautics and Space Administration under Grant NAG-1-517, and by NSF under Grant UINT-8521208.This research was supported in part by the Fonds zur Förderung der wissenschaftichen Forschung under S3206 and P6005 and by AFOSR-84-0398. Part of this work was performed while the author was visiting the Division of Applied Mathematics, Brown University, Providence, RI, USA.  相似文献   

19.
This paper presents a multiplier-type method for nonlinear programming problems with both equality and inequality constraints. Slack variables are used for the inequalities. The penalty coefficient is adjusted automatically, and the method converges quadratically to points satisfying second-order conditions.The work of the first author was supported by NSF RANN and JSEP Contract No. F44620-71-C-0087; the work of the second author was supported by the National Science Foundation Grant No. ENG73-08214A01 and US Army Research Office Durham Contract No. DAHC04-73-C-0025.  相似文献   

20.
We start with a study of the primal—dual affine-scaling algorithms for linear programs. Using ideas from Kojima et al., Mizuno and Nagasawa, and new potential functions we establish a framework for primal—dual algorithms that keep a potential function value fixed. We show that if the potential function used in the algorithm is compatible with a corresponding neighborhood of the central path then the convergence proofs simplify greatly. Our algorithms have the property that all the iterates can be kept in a neighborhood of the central path without using any centering in the search directions.Research performed while the author was Ph.D. student at Cornell University and was supported in part by the United States Army Research Office through the Army Center of Excellence for Symbolic Methods in Algorithmic Mathematics (ACSyAM), Mathematical Sciences Institute of Cornell University, Contract DAAL03-91-C-0027, and also by NSF, AFOSR and ONR through NSF Grant DMS-8920550.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号