首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
铁合金产品中碳硫含量测定以硅铁最为常见 ,随着低碳硅铁 ( c C<0 .0 1 5% ) ,高纯硅铁 ( c C<0 .0 0 30 % )的出现 ,碳硫含量成为分析中必检元素 ,其含量的准确测定显得尤为重要[1] 。而硅铁中碳硫含量的测定是铁合金产品中很难测准的品种 ,其原因是硅铁样品难烧好 ,加上低碳硅铁中碳硫含量比普通硅铁中碳硫含量低的多 ,这对准确测定低碳硅铁中碳硫更增加了难度。美国 LECO公司在高频红外仪上推荐采用双层坩埚燃烧 ,但每只坩埚 1美元 ,成本较高。国内曾报道采用 W、Fe、Sn分层夹样品 ,但用在低碳硅铁上效果仍不理想。在使用仪器上 ,除…  相似文献   

2.
建立了红外碳硫分析仪测定白云石中硫含量测量结果不确定度数学模型.通过对不确定度分量的计算分析,求得了该检测方法的合成标准不确定度和扩展确定度.结果表明,方法的检测结果可信度较高,适于白云石中硫含量的测定.  相似文献   

3.
红外碳硫测定仪测定铁矿石中硫   总被引:4,自引:0,他引:4  
采用红外碳硫仪对铁矿石中硫进行测定,通过对助熔剂各类、助熔剂的加入量,助熔剂的比例,称样量、试样加入顺序等条件进行试验,选择了测定铁矿石中硫的最佳条件,此法的测定范围为0.01%-4.0%。  相似文献   

4.
红外碳硫分析仪测定硅铁中碳硫   总被引:7,自引:0,他引:7  
随着科学技术的进步,在钢铁企业中,化学成分分析已从传统的湿法化学分析逐步进入全自动化的仪器分析。由于市场对硅铁质量要求的提高,对硅铁中碳和硫的准确测定,显得十分重要。目前本公司使用HIR-944型红外碳硫分析仪测定硅铁中碳硫含量。该仪器采用586微机进行分析,微机容量  相似文献   

5.
红外检测器中碳硫空白的讨论   总被引:2,自引:0,他引:2  
1 仪器与试剂 仪器:HCS+140型红外碳硫分析仪(原CCS-140型,由上海德凯仪器公司生产) 助熔剂:高纯钨粒(上海钢研所生产) 纯铁(太原钢铁公司生产) 锡(云南锡业公司研究所生产) 燃气:普氧(99.9%) 高纯氧(99.99%) 动力气:普氮 坩埚:湖南醴陵生产(23mm×23mm)  相似文献   

6.
HCS-040管式炉红外碳硫分析仪测定稀土金属中碳硫   总被引:4,自引:0,他引:4  
稀土金属中碳硫含量是一项重要的指标。各种单一的稀土金属熔点差异较大 ,且不同等级的稀土金属中碳硫含量也不一样。本文从稀土元素的特殊性出发 ,针对各种稀土金属在测定过程中的行为进行探讨。试验表明 ,稀土金属在以锡粒加纯铁为助熔剂 ,燃烧温度为 12 0 0℃左右时燃烧好 ,碳硫释放完全 ,结果准确可靠。本文所用HCS 0 4 0管式炉红外碳硫仪与高频炉相比具有成本低、易维修、速度快的优点。与简易管式炉碱液吸收电导法[1] 测定碳硫相比具有分析结果准确、重现性好的优点。1 试验部分1.1 仪器与主要试剂HCS 0 4 0型管式炉红外碳硫…  相似文献   

7.
利用高频红外碳硫仪,建立盐酸预处理-红外吸收法测定地球化学样品中有机碳含量的分析方法。对样品的称取量、助熔剂的添加量、盐酸溶液的体积分数等条件进行了优化。高频红外碳硫分析仪专用陶瓷坩埚经过1 200℃高温处理后,能够有效降低空白值。优化后的分析条件为:确定称样量为50 mg,使用体积分数为40%的盐酸溶液,选择0.5 g纯铁屑和1.5 g钨粒作为助熔剂;对土壤和水系沉积物等不同类型的地球化学样品进行6次测定,选择国家一级标准物质作为实验对象,其检测结果的相对误差为0.23%~3.63%,相对标准偏差为0.592%~4.551%,符合《多目标区域地球化学调查规范》规定,满足分析测试要求。该方法测定结果准确、稳定,流程短、操作简单,适用于地球化学样品中有机碳含量的测定。  相似文献   

8.
9.
高频红外碳硫仪快速测定金属硅中的碳和硫   总被引:2,自引:0,他引:2  
应用LECO CS—444红外碳硫仪,建立了金属硅中微量碳和硫的测定方法,对助熔剂的选择和用量、空白的控制和称样量等条件进行了探讨,在最佳条件下测定,取得满意结果。  相似文献   

10.
钽是一种稀有金属 ,碳化钽主要是用作硬质合金的添加剂 ,其中碳硫含量直接影响硬质合金的性质。碳的测定方法一般参考GB/T15 0 76 .12 1994中库仑分析方法 ,线性范围为 0 .0 0 1% 0 .5 % ,实际往往碳化钽中碳大于 6 .2 0 % ,而硫含量很低 ,一般要求小于 0 .0 10 % ,目前尚没有合适的方法 ,生产企业一般采用管式炉燃烧滴定法 ,因此低含量的硫测定结果精度较差、误差较大。高频红外碳硫仪法 ,其高频炉燃烧温度可达 170 0℃左右 ,样品能够完全燃烧 ,使硫释放完全 ,检出限低 ,灵敏度高 (0 0 0 0 1% ) ,线性范围宽 (碳为 0 6 .5 % ,硫为 0 0 …  相似文献   

11.
高频红外碳硫仪由于便捷高效,常应用于区域地球化学样品中硫的分析检测。本文采用高频红外碳硫仪测定低中高含量的硫,以纯铁屑、锡粒和钨粒为助熔剂,对样品称样量、助熔剂的种类、加入顺序和用量等因素进行探讨,确定了最佳分析岩石、土壤和水系沉积物中硫含量的条件,并且用国家一级标准物质验证了该方法的准确度和精密度。结果表明,当样品和助熔剂的加入顺序和质量分别为:0.05 g样品、0.5 g铁助熔剂、1.7 g钨粒时,土壤和水系沉积物中硫的测定结果最稳定,岩石标准样品额外的加入0.5 g锡改善样品流动性,提高分析准确度。该方法的相对标准偏差(RSD)小于6%(n= 12),相对误差绝对值小于8%。此方法具有操作简单、高效、稳定性好的特点,适合于大批量区域地球化学样品中硫的检测。  相似文献   

12.
通过对气体净化,坩埚处理,试样处理及称样量选择,助熔剂种类及用量等因素的优化,建立了钢铁中超低含量碳硫的测定方法,实验结果表明:比较器水平设为1%,分析时间设为45s,坩埚在1 350℃下预烧45min,选择钨作为助熔剂且使用前在140℃烘3h,助熔剂用量为1.5g,称样量为0.5g时,是分析钢铁中碳硫含量在0.001%~0.01%的最佳条件,方法重复性好,准确度高,在实际操作中切实可行。  相似文献   

13.
碳硫测定中吸附问题的探讨   总被引:2,自引:0,他引:2  
  相似文献   

14.
近年来随着高频碳硫仪的快速发展,高品位的硫检测技术又有了新的技术突破,因此,本文采用国家标准硫铁矿样品建立标准工作曲线,结合内控管理样品校正该曲线,建立了高频红外碳硫仪快速测定硫精矿中高品位硫的分析方法。文中对样品粒度、称样量、灼烧时间和助熔剂的选择进行了讨论,经过11次试验测定的精密度为0.39% 。以不同人员多次采用化学法(空气燃烧中和法-氢氧化钠滴定)检测结果为比对依据,通过试验对比,绝对误差可以控制在0.60% 以内,完全能够满足硫精矿工业生产的快速分析需要。  相似文献   

15.
高频红外碳硫分析仪测定石膏矿中的三氧化硫   总被引:1,自引:0,他引:1  
利用高频红外碳硫仪对石膏矿中三氧化硫含量的测定进行了研究,取得了较好的结果.方法检出限为0.003 0%.用石膏标准样品(GBW03109a,GBW03110)进行分析,测定值与认定值相符,测定值的相对标准偏差(n=9)在0.32%~0.81%之间.使用石膏标准样品(GBW03111)进行本法与国标硫酸钡重量法做比对试验,测定结果无显著性差异.加标回收率为96.4%~104.0%.  相似文献   

16.
采用电感耦合等离子体原子发射光谱法测定某低碳高硫钢中的铋含量。通过实验探讨了钢中基体元素及共存元素对铋元素分析谱线的光谱干扰情况,确定了合适的分析谱线和背景校正方法,铋元素的分析谱线为223.061nm。根据某低碳高硫钢中铋元素含量范围,合成系列标准溶液,建立工作曲线,工作曲线的线性范围为0.01%~0.50%,线性相关系数r=0.9998,方法检出限为0.00279%,测量结果的相对标准偏差小于2.7%,加标回收率为98.2%~101.2%。  相似文献   

17.
建立高频燃烧–红外吸收法测定石墨及其制品中的硫含量。结合高频红外碳硫分析仪器特点,试验确定了方法的实验条件:试样粉碎至2.5 mm以下颗粒状,所有试样均为干燥状态,称样量控制在0.200 0~0.300 0 g之间,助熔剂为纯铁和钨粒,助熔剂添加顺序为纯铁+样品+钨粒。采用该方法对石墨标准样品进行测定,测定结果与标准值相符合,测定结果的相对标准偏差为0.86%~1.96%(n=10)。该法可用于石墨及其制品中硫含量的测定。  相似文献   

18.
高频燃烧-红外吸收法测定大气粉尘中碳硫   总被引:1,自引:0,他引:1  
使用美国LecoCS-344碳硫测定仪以W-Fe为助熔剂测定大气粉尘中碳硫含量,考察了空白值、助熔剂、分析时间对碳硫释放的影响,并应用microsoft Excel 2000软件处理试验数据,最终得到粉尘样品中碳硫含量,方法快速准确,测定范围为0.1%-3%,相对标准偏差优于7%。  相似文献   

19.
采用CS-800型碳硫分析仪对硫回收催化剂的积碳和积硫量进行分析,考察了助熔剂和样品用量对分析结果的影响,同时考察了分析方法的准确性.试验结果表明,碳的回收率为96.8%~100%,硫的回收率为98.9%~100%,相对标准偏差小于3%.分析方法准确可靠,重复性好,硫回收催化剂的称样质量为50.0~70.0 mg,能满足分析要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号