首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport of hydrochloric acid (0.001-0.1 M) and sodium dodecyl sulfate (0.001-0.1 M) has been measured through a membrane consisting of a blend of cellulose acetate butyrate and cellulose acetate hydrogen phthalate. The cellulose derivative blend is suggested to suffer an alteration in the degree of hydrophobicity when in equilibrium with sodium dodecyl sulfate (SDS) through hemimicelle formation. An increase in surface hydrophobicity of the blend when in equilibrium with SDS solution was observed by fluorescence measurements using the vibronic bands of the probe pyrene, as well as by water desorption kinetics; a decrease of the effective diffusion coefficients from 1.2 × 10−11 m2 s−1 in the absence of SDS to approximately 2 × 10−13 m2 s−1 in its presence was found. The value obtained for the mutual diffusion coefficient of HCl in the concentration range 0.001-0.1 M (D=4.2×10−14 m2 s−1) shows also that the membrane presents hydrophobic features. The flux of SDS in the blend membrane at different pH values shows two distinct permeation rates depending on the cmc. However, from the calculation of permeability coefficients at SDS concentrations below the cmc a clear decrease in P is found, whilst, at concentrations above the cmc the permeability coefficients are nearly constant, only showing a slightly increase. The diffusion coefficients of SDS in the blend increase over the whole SDS concentration range analysed and show an effective diffusion coefficient 2-3 orders of magnitude below the diffusion coefficients of SDS in aqueous solutions. This fact suggests that the only diffusing species are SDS unimers. The presence of HCl in the SDS bulk solution has the effect of increasing the permeability and diffusion coefficients. Mutual analysis of permeation and diffusion coefficients and sorption isotherms shows that, on decreasing the pH, the interactions between SDS and the polymer network decrease. This is also reflected in a clear decrease of the hydrophobic interactions between the diffusing and polymeric species, provoked by a decrease in the unimer-unimer association.  相似文献   

2.
The diffusive gradients in thin films (DGT) technique, utilizing resin gel with ion-exchange resin Duolite GT73 and new ion-exchange resin Ambersep GT74, was investigated for the accumulation of four mercury species (Hg2+, CH3Hg+, C2H5Hg+, C6H5Hg+). The diffusion coefficients of mercury species in agarose gel calculated on the basis of Fick’s Law were mercury species-specific. The diffusion coefficients of Hg2+ and CH3Hg+ at 25 °C (9.07 ± 0.23 × 10−6 cm2 s−1 and 9.06 ± 0.30 × 10−6 cm2 s−1, respectively) were very similar, but the diffusion coefficients of C2H5Hg+ (6.87 ± 0.23 × 10−6 cm2 s−1) and C6H5Hg+ (3.86 ± 0.19 × 10−6 cm2 s−1) were significantly lower. Influence of experimental conditions (pH, selected cations, chlorides and humic substance) on mercury species accumulation by DGT was studied. The DGT technique was applied to river water spiked with mercury species.  相似文献   

3.
Li4Ti5O12 thin films for rechargeable lithium batteries were prepared by a sol-gel method with poly(vinylpyrrolidone). Interfacial properties of lithium insertion into Li4Ti5O12 thin film were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). Redox peaks in CV were very sharp even at a fast scan rate of 50 mV s−1, indicating that Li4Ti5O12 thin film had a fast electrochemical response, and that an apparent chemical diffusion coefficient of Li+ ion was estimated to be 6.8×10−11 cm2 s−1 from a dependence of peak current on sweep rates. From EIS, it can be seen that Li+ ions become more mobile at 1.55 V vs. Li/Li+, corresponding to a two-phase region, and the chemical diffusion coefficients of Li+ ion ranged from 10−10 to 10−12 cm2 s−1 at various potentials. The chemical diffusion coefficients of Li+ ion in Li4Ti5O12 were also estimated from PITT. They were in a range of 10−11-10−12 cm2 s−1.  相似文献   

4.
The extremely slow diffusion of the molecule n-pentane caused by the hopping from cage-to-cage in zeolite ZK5 has been investigated by transition state theory (TST). Such slow diffusion cannot be accessed by usual molecular dynamics simulation techniques. The calculation of the partition function ratio needed for TST was enabled by a recently developed method, the so-called high-temperature configuration-space exploration (HTCE). Dynamical corrections for recrossing events have also been taken into account. The obtained intra-zeolite self-diffusion constant between 247 and 317 K of 10−16–10−15 m2 s−1 falls in the range of 10−18–10−15 m2 s−1 observed experimentally. The calculated energetic barrier between two neighboring cages of 29 kJ mol−1 is in good agreement with that of 28 ± 5 kJ mol−1 obtained from NMR measurement.  相似文献   

5.
Solid electrolyte materials have the potential to improve performance and safety characteristics of batteries by replacing conventional solvent-based electrolytes. For this purpose, new candidate single ion conductor self-standing networks were synthesized with trifluoromethane-sulfonylimide (TFSI) lithium salt based monomer using poly(ethyleneglycol) dimethacrylate (PEGDM 750) as crosslinker. The highest ionic conductivity was 3.4 × 10−7 S cm−1 at 30 °C in the dry state. Thermal and mechanical analyses showed good thermal stability up to 190 °C and rubbery-like properties at ambient temperature. A direct relationship between ionic conductivity and glassy or rubbery state of the membranes was found. Vogel–Tammann–Fulcher behavior was observed in the dry state which is consistent with a lithium conductivity correlated with polymer chain mobility. By swelling the network in propylene carbonate, a self-standing electrolyte gel could be obtained with an ionic conductivity as high as 1 × 10−4 S cm−1 at 30 °C. The individual diffusion coefficients of mobile species in the material (19F and 7Li) were measured and quantified using pulsed-field gradient nuclear magnetic resonance (PFG-NMR). Diffusion coefficients for the most mobile components of the lithium cations and fluorinated anions at 100 °C in dry membranes have been found to be 3.4 × 10−8 cm2 s−1 and 2.1 × 10−8 cm2 s−1 respectively.  相似文献   

6.
The rate coefficients of H atom addition to 20 acrylate type monomers were measured in dilute aqueous solutions by pulse radiolysis technique. All the measured values were in a relatively narrow range (2×109-1×1010 mol−1 dm3 s−1). The rate coefficients changed in the following order: crotonates≈maleates<fumarates<acrylic acid esters≈acrylamides<methacrylic acid esters. Some correlation between the H and OH addition rate coefficients was found.  相似文献   

7.
Polyaniline (PANI) films in the form of emeraldine salt (ES) doped with aqueous organic sulfonic acids such as camphorsulfonic acid (CSA), p-toluenesulfonic acid (p-TSA) and dodecylbenzenesulfonic acid (DBSA) were studied. The ES films were obtained by treating the PANI in the form of emeraldine base (EB) with the aqueous solution of the acids. The dopant weight fraction (w), which is related to the mass gain during the redoping of EB, was in situ determined using a quartz crystal microbalance (QCM). The behaviour of PANI doping with different acids indicates that the uptake shows a slow diffusion process. The kinetics of the doping reaction is dominated by Fickian diffusion kinetics. The diffusion coefficients (D) of the dopant ions into the PANI chains were determined and were found to vary within the range of (1.6-18) × 10−15 cm2 s−1. Moreover, the effect of water on these doped ES films was studied. The starting point is the fact that PANI-coated the electrode of QCM shows significant frequency shifts on exposure to water. The changes in the frequency as a function of treatment time in water were quantitatively measured. The response of the device suggests that the mass decrease under water exposure is due to dopant ions release. The latter films were dedoped by exposure to ammonia solution to obtain the EB film form. A further decrease in the mass of the films was observed. The percentage of the mass loss due to water exposure is found to be less than w determined during the dedoping process.  相似文献   

8.
Infra-red (IR) photoacoustic spectroscopy (PAS) and attenuated total reflectance spectroscopy (ATR) were used to determine the diffusion coefficient of transdermally delivered nitroglycerin (NG) within a polyethylene glycol (PEG) saturated microfibre filter. The build-up of the drug within the probed layer was measured by monitoring the change in IR bands as a function of time. The absorbance was assumed to be directly proportional to the drug concentration. The diffusion coefficient of the nitroglycerin within the filter was calculated by fitting the theoretical diffusion model to the experimental diffusion profile. The diffusion coefficient of nitroglycerin within the filter was calculated to be (3.83±0.40)×10−7 cm2 s−1 and (4.31±0.60)×10−7 cm2 s−1 using PAS and ATR, respectively. The close agreement of the two values indicates the reliability of the techniques and diffusion models.  相似文献   

9.
A new method is developed for the catalytic oxidation of ascorbic acid at graphite zeolite-modified electrode, doped with copper(II) (Cu2+A/ZCME). Copper(II) exchanged in zeolite type A acts as catalyst to oxidize ascorbic acid. The modified electrode lowered the overpotential of the reaction by ∼400 mV. First, the electrochemical behavior of copper(II), incorporated in the zeolite type A modified electrode, was studied. The results illustrate that diffusion can control the copper(II)/copper(0) redox process at the Cu2+A/ZCME. Then, the behavior of electrocatalytic oxidation reaction for ascorbic acid was researched. The electrode was employed to study electrocatalytic oxidation of ascorbic acid, using cyclic voltammetry and chronoamperometry as diagnostic techniques. The diffusion coefficient of ascorbic acid was equal to 1.028 × 10−5 cm2 s−1. A linear calibration graph was obtained over the ascorbic acid with a concentration range of 0.003-6.00 mmol L−1. The detection limit (DL) of ascorbic acid was estimated as 2.76 × 10−7 mol L−1. The relative standard deviations of 10 replicate measurements (performed on a single electrode at several ascorbic acid concentrations between 3.0 and 200 μmol L−1) were measured between 1.0 and 2.4%.  相似文献   

10.
The free radical scavenging activity of 42 Spanish commercial wines was determined using the 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+). The ABTS+ radical was generated enzymatically using a horseradish peroxidase and hydrogen peroxide. The presence of wine phenolic compounds caused the absorbance of the radical to decay at 414 nm. The measurement conditions were optimised. The total phenolic content of wines ranged from 1262 to 2389 mg l−1 for red wines and 70 to 407 mg l−1 for white wines, expressed as gallic acid equivalents. The phenolic content of Sherry wines was similar to that of white wines. Optimum dilutions for white and Sherry wines were set up as a function of their total phenolic content (for total phenol index, TPI<300 mg gallic acid per liter, dilution 2.5:10 to 5:10; for TPI>300 mg gallic acid per liter, dilution 1:10 to 3:10). Red wines absorb at the wavelength of measurement and dilutions between 0.35:10 and 0.1:10 are advisable. Reaction kinetics were also monitored and the antioxidant activity, expressed as Trolox Equivalent Antioxidant Capacity (TEAC), was determined at 2 and 15 min of reaction. The mean values for TEAC2 min were 5.01±1.40 mM for red wines, 0.46±0.32 mM for white wines and 0.26±0.19 mM for Sherry wines. At 15 min, mean values were 6.93±2.41 mM for red wines, 0.67±0.47 mM for white wines and 0.26±0.19 mM for Sherry wines. The correlation coefficients were better at 2 min (r=0.9012) than at 15 min (r=0.8462) when compared with TPI. Hence, TEAC2 min seems to be a more appropriate measure.  相似文献   

11.
D. Vega  J.M. Pingarrón 《Talanta》2007,71(3):1031-1038
The use of a carbon nanotube-modified glassy carbon electrode (CNT-GCE) for the LC-EC detection of phenolic compounds with estrogenic activity is reported. Cyclic voltammograms for phenolic endocrine disruptors and estrogenic hormones showed, in general, an enhancement of their electrochemical oxidation responses at CNT-GCE attributable to the electrocatalytic effect caused by CNTs. Hydrodynamic voltammograms obtained under flow injection conditions lead to the selection of +700 mV as the potential value to be applied for the amperometric detection of the phenolic estrogenic compounds, this value being remarkably less positive than those reported in the literature using other electrode materials. Successive injections of these compounds demonstrated that no electrode surface fouling occurred. A mobile phase consisting of a 50:50 (v/v) acetonitrile:0.05 mol l−1 phosphate buffer of pH 7.0 was selected for the chromatographic separation of mixtures of these compounds, with detection limits ranging between 98 and 340 nmol l−1. Good recoveries were obtained in the analysis of underground well water and tap water samples spiked with some phenolic estrogenic compounds at a 14 nmol l−1 concentration level.  相似文献   

12.
The collisional broadening and shift rate coefficients of the “forbidden“ 6p2 3P0 → 6p2 3P1 transition in lead were determined by diode laser absorption measurements performed simultaneously in two resistively heated hot-pipes. One hot-pipe contained Pb vapor and noble gas (Ar or He) at low pressure, while the other was filled with Pb and noble gas at variable pressure. The measurements were performed at temperatures of 1220 K and 1290 K, i.e., lead number densities of 4.8 × 1015 cm− 3 and 1.2 × 1016 cm− 3. The broadening rates were obtained by fitting the experimental collisionally broadened absorption line shapes to theoretical Voigt profiles. The shift rates were determined by measuring the difference between the peak absorption positions in the spectra measured simultaneously in the heat pipe filled with noble gas at reference pressure and the one with noble gas at variable pressure. The following data for the broadening and shift rate coefficients due to collisions with Ar and He were obtained: γBAr = (3.4 ± 0.1) × 10− 10 cm3 s− 1, γBHe = (3.8 ± 0.1) × 10− 10 cm3 s− 1, γSAr = (− 7.3 ± 0.8) × 10− 11 cm3 s− 1, γSHe = (− 6.5 ± 0.7) × 10− 11 cm3 s− 1.  相似文献   

13.
This paper focuses on the thermal properties, the microstructure, and the molecular dynamics of water in the hydrogels (1.5, 2, 3, 4, and 5% [g mL−1]) formed by sugar-based low molecular-weight gelator methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside. The energy needed to break the non-covalent interactions such as the hydrophobic, dipole-dipole, and π-π stacking interactions responsible for the gel formation was calculated to be 43 kJ mol−1. The microstructure of the 4% [g mL−1] hydrogel shows a characteristic fibril structure of the gel network with individual gel fibers, the junction points of thicker fibers, and pores occupied by water. The single mode diffusion of water molecules inside the gel network was detected irrespective of the diffusion time Δ (8-75 ms) and hydrogel concentration. For Δ of 10 ms the water diffusion is almost free and characterized by the diffusion coefficient in the range from 2.17×10−9 to 1.84×10−9 m2 s−1 for studied hydrogels. For larger Δ values, so-called restricted diffusions are observed and manifested in the linear decreases of the diffusion coefficient with diffusing time Δ, as shown for 5% gel. Only the one average proton spin-lattice relaxation time T1 of water was determined for the studied hydrogels, irrespective of gelator concentration.  相似文献   

14.
Promising voltammetric sensors based on the modification of Pt and poly(3-methylthiophene) (PMT) electrodes with Pd nanoparticles were achieved for the determination of catecholamine neurotransmitters, ascorbic acid and acetaminophen. Electrochemistry of the indicated compounds was studied at these electrodes and interesting electrocatalytic effects were found. Furthermore, simple, easily prepared one electrochemical step Pd-modified Pt electrode (Pt/Pd) is reported for the first time. Cyclic voltammetry (CV) and chronocoulometry (CC) were used for the determination of the apparent diffusion coefficients in different electrolytes at these electrodes and the values are in the range from 10−4 to 10−5 cm2 s−1. Furthermore, it was found that the method of polymer formation had a substantial effect on the synergism between the polymer film and the loaded metal particles towards the oxidation of dopamine (DA) in different supporting electrolytes. This was confirmed by the CV, CC and EIS (electrochemical impedance spectroscopy) as well as SEM (Scanning Electron Microscopy) results. Pt and PMT electrodes modified with Pd nanoparticles showed excellent results for the simultaneous determination of tertiary and quaternary mixtures of the studied compounds.  相似文献   

15.
An integrative passive sampler (Chemcatcher®) consisting of a 47 mm C18 Empore™ disk as the receiving phase overlaid with a thin cellulose acetate diffusion membrane was developed and calibrated for the measurement of time-weighted average water concentrations of organotin compounds [monobutyltin (MBT), dibutyltin (DBT), tributlytin (TBT) and triphenyltin (TPhT)] in water. The effect of water temperature and turbulence on the uptake rate of these analytes was evaluated in the laboratory using a flow-through tank. Uptake was linear over a 14-day period being in the range: MBT (3-23 mL day−1), DBT (40-200 mL day−1), TBT (30-200 mL day−1) and TPhT (30-190 mL day−1) for all the different conditions tested. These sampling rates were high enough to permit the use of the Chemcatcher® to monitor levels of organotin compounds typically found in polluted aquatic environments. Using gas chromatography (GC) with either ICP-MS or flame photometric detection, limits of detection for the device (14-day deployment) for the different organotin compounds in water were in the range of 0.2-7.5 ng L−1, and once accumulated in the receiving phase the compounds were stable over prolonged periods. Due to anisotropic exchange kinetics, performance reference compounds could not be used with this passive sampling system to compensate for changes in sampling rate due to variations in water temperature, turbulence and biofouling of the surface of the diffusion membrane during field deployments. The performance of the Chemcatcher® was evaluated alongside spot water sampling in Alicante Habour, Spain which is known to contain elevated levels of organotin compounds. The samplers provided time-weighted average concentrations of the bioavailable fractions of the tin compounds where environmental concentrations fluctuated markedly in time.  相似文献   

16.
Elci L  Kolbe N  Elci SG  Anderson JT 《Talanta》2011,85(1):551-555
Solid-phase extraction (SPE) followed by derivatization and gas chromatography-atomic emission detection (GC-AED) was evaluated for the determination of five chlorophenols (CPs) in water samples. The derivatization was based on the esterification of phenolic compounds with ferrocenecarboxylic acid. The determination of the derivatized phenols was performed by GC-AED in the iron selective detection mode at 302 nm. The described method was tested on spiked water samples.The overall method gave detection limits of 1.6-3.7 ng L−1 and recoveries of 90.9-104.5% for the examined mono- to trichlorophenols in 10 mL water samples. The CPs extracted from a 10 mL water sample with SPE were concentrated into 100 μL of organic solvent, a preconcentration factor of 100. The method was applied to lake and tap water samples, and CP contents between 6 and 51 ng L−1 in lake water and between below the detection limit and 8 ng L−1 in tap water were found for different CPs. The method is quick, simple and gives excellent recoveries, limits of detection and standard deviations.  相似文献   

17.
The rate constants for the reactions of OH radicals with CF3OCHFCF3, and CF3CHFCF3 have been measured over the temperature range 250-430 K. Kinetic measurements have been carried out using the flash photolysis, and laser photolysis methods combined, respectively, with the laser induced fluorescence technique. The influence of impurities in the samples has been investigated by using gas chromatography. No sizable effect of impurities was found on the measured rate constants of these fluorinated compounds, if the purified samples were used in the measurements. The following Arrhenius expressions were determined: k(CF3OCHFCF3) = (4.39 ± 1.38) × 10−13 exp[−(1780 ± 100)/T] cm3 molecule−1 s−1, and k(CF3CHFCF3) = (6.19 ± 2.07) × 10−13 exp[−(1830 ± 100)/T] cm3 molecule−1 s−1.  相似文献   

18.
Electrochemical behavior of hexafluoroniobate (Nb(V)F6), heptafluorotungstate (W(VI)F7), and oxotetrafluorovanadate (V(V)OF4) anions has been investigated in N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (BMPyrTFSA) ionic liquid at 298 K by means of cyclic voltammetry and chronoamperometry. Cyclic voltammograms at a Pt electrode showed that Nb(V)F6 anion is reduced to Nb(IV)F62− by a one-electron reversible reaction. Electrochemical reductions of W(VI)F7 and V(V)OF4 anions at a Pt electrode are quasi-reversible and irreversible reactions, respectively, according to cyclic voltammetry. The diffusion coefficients of Nb(V)F6, W(VI)F7 and V(V)OF4 determined by chronoamperometry are 1.34 × 10−7, 7.45 × 10−8 and 2.49 × 10−7 cm2 s−1, respectively. The Stokes radii of Nb(V)F6, W(VI)F7, and V(V)OF4 in BMPyrTFSA have been calculated to be 0.23, 0.38, and 0.12 nm, from the diffusion coefficients and viscosities obtained.  相似文献   

19.
Brassica raparapa group is widely distributed and consumed in northwestern Spain. The consumption of Brassica vegetables has been related to human health due to their phytochemicals, such as glucosinolates and phenolic compounds that induce a variety of physiological functions including antioxidant activity, enzymes regulation and apoptosis control and the cell cycle. For first time in Brassica crops, intact glucosinolates and phenolic compounds were simultaneously identified and characterized. Twelve intact glucosinolates, belonging to the three chemical classes, and more than 30 phenolic compounds were found in B. rapa leaves and young shoots (turnip greens and turnip tops) by LC–UV photodiode array detection (PAD)–electrospray ionization (ESI). The main naturally occurring phenolic compounds identified were flavonoids and derivatives of hydroxycinnamic acids. The majority of the flavonoids were kaempferol, quercetin and isorhamnetin glycosylated and acylated with different hydroxycinnamic acids. Quantification of the main compounds by HPLC-PAD showed significant differences for most of compounds between plant organs. Total glucosinolate content value was 26.84 μmol g−1 dw for turnip greens and 29.11 μmol g−1 dw for turnip tops; gluconapin being the predominant glucosinolate (23.2 μmol g−1 dw). Phenolic compounds were higher in turnip greens 51.71 μmol g−1 dw than in turnip tops 38.99 μmol g−1 dw, in which flavonols were always the major compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号