首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isobaric vapor–liquid equilibrium (VLE) data for acetic acid + water, acetic acid + methyl ethyl ketone (MEK), MEK + isopropyl acetate, acetic acid + MEK + water and acetic acid + MEK + isopropyl acetate + water are measured at 101.33 kPa using a modified Rose cell. The nonideal behavior in vapor phase of binary systems measured in this work is analyzed through calculating fugacity coefficients since mixture containing acetic acid deviates from ideal behavior seriously in vapor phase due to the associating effect of acetic acid. Combined with Hayden–O’Connell (HOC) equation, the VLE data of the measured binary systems for acetic acid + water, acetic acid + MEK and MEK + isopropyl acetate are correlated by the NRTL and UNIQUAC models. The NRTL model parameters obtained from correlating data of binary system are used to predict the VLE data of the ternary and quaternary systems, and the predicted values obtained in this way agree well with the experimental values.  相似文献   

2.
(Liquid + liquid) equilibrium (LLE) data for the {water + acetic acid + dibasic esters mixture (dimethyl adipate + dimethyl glutarate + dimethyl succinate)} system have been determined experimentally at T = (298.2, 308.2, and 318.2) K. Complete phase diagrams were obtained by determining solubility curve and tie-line data. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The UNIFAC model was used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data between CH2, CH3COO, CH3, COOH, and H2O functional groups. Distribution coefficients and separation factors were compared with previous studies.  相似文献   

3.
Liquid–liquid equilibrium (LLE) data for the quaternary systems of [water + acetic acid + mixed solvent (dipropyl ether + diisopropyl ether)] were measured at 298.2 K and atmospheric pressure, using various compositions of mixed solvent. Binodal curves and tie-lines for the quaternary systems have been determined in order to investigate the effect of solvent mixture, dipropyl ether (DPE) and diisopropyl ether (IPE), on extracting acetic acid from aqueous solution. A comparison of the extracting capabilities of the mixed solvents was made with respect to distribution coefficients, separation factors, and solvent free selectivity bases. Reliability of the data was confirmed by using the Othmer–Tobias and Hand plots. The tie-lines were also correlated using the UNIFAC model. The average root-mean-square deviations between the observed and calculated mass fractions for the studied systems were in the range of 10–14%.  相似文献   

4.
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + cyclohexanone) were measured under atmospheric pressure and at T = (293.2, 298.2 and 303.2) K. Phase diagrams were obtained by determining solubility and tie-line data. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated over the immiscibility regions.  相似文献   

5.
(Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end composition were examined for mixtures of {water (1) + propionic acid (2) + octanol or nonanol or decanol or dodecanol (3)} at T = 298.15 K and 101.3 ± 0.7 kPa. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

6.
(Liquid + liquid) equilibrium (LLE) data for the ternary system of (water + butyric acid + oleyl alcohol) at T = (298.15, 308.15, and 318.15) K are reported. Complete phase diagrams were obtained by determining solubility and the tie-line data. The reliability of the experimental tie lines was confirmed by using Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium data. The phase diagrams for the ternary mixtures including both the experimental and correlated tie lines are presented. Distribution coefficients and separation factors were evaluated for the immiscibility region. A comparison of the solvent extracting capability was made with respect to distribution coefficients, separation factors, and solvent-free selectivity bases for T = (298.15, 308.15, and 318.15) K. It is concluded that oleyl alcohol may serve as an adequate solvent to extract butyric acid from its dilute aqueous solutions.  相似文献   

7.
Liquid–liquid equilibria of systems water (A) + CiEj surfactant (B) + n-alkane (C) have been modeled by a mass-action law model previously developed and so far successfully applied to a series of binary water + CiEj systems and to the ternary system water + C4E1 + n-dodecane. These calculations provide the basis for the presented modeling. The aqueous systems give information about the association constants and the χAB-parameter of the Flory–Huggins theory and the ternary C4E1-system provides universal temperature functions for the χAC- and the χBC-parameter. The three-phase equilibrium for seven ternary CiEj systems (i = 6–12, j = 3–6) has been calculated by fitting one additional parameter for each of both temperature functions to the characteristic “fish-tail” point. The agreement with the experimental data is reasonably well. For systems with very small three-phase areas the results can considerably be improved by individual temperature functions that incorporate the experimental temperature maximum of the “fish” into the parameter fit. Based on the parameters of the system water + C8E4 + n-C8H18 the “fish-shaped” phase diagram of the system water + C8E4 + n-C14H30 was predicted reasonably well.  相似文献   

8.
Liquid–liquid equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {(water (1) + levulinic acid (2) + dimethyl succinate or dimethyl glutarate or dimethyl adipate (3)} at 298.15 K and 101.3 ± 0.7 kPa. The reliability of the experimental tie-line data was confirmed by using the Othmer–Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. The LLE data were correlated fairly well with UNIQUAC and NRTL models, indicating the reliability of the UNIQUAC and NRTL equations for these ternary systems. The best results were achieved with the NRTL equation, using non-randomness parameter (α = 0.3) for the correlation. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvents.  相似文献   

9.
The reduction of sulfur content in gasoline and diesel fuel is a great environmental concern to reduce the motor vehicle emissions. Oxidative desulfurization using acetonitrile biphasic system has received much attention in recent years. The oxidative desulfurization can be oxidized the unreactive sulfur contents in the hydrodesulfurization and removed effectively. For the oxidative desulfurization process design and development, liquid–liquid equilibria (LLE) for acetonitrile biphasic systems are needed as fundamental information. In our previous work, LLE for acetonitrile + n-octane and + n-decane systems have been reported. In this work, therefore, LLE for acetonitrile + n-hexadecane system was measured. Furthermore, NRTL equation was applied to correlate the LLE for these three acetonitrile + n-alkane systems.  相似文献   

10.
Liquid-liquid equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {(water (1) + butyric acid (2) + diethyl succinate or diethyl glutarate or diethyl adipate (3)} at 298.2 K and 101.3 ± 0.7 kPa. The relative mutual solubility of butyric acid is higher in the diethyl succinate or diethyl glutarate or diethyl adipate layers than water layers. The consistency of the experimental tie-lines was determined through the Othmer-Tobias correlation equation. The LLE data were correlated with NRTL model, indicating the reliability of the NRTL equations for these ternary systems. The best results were achieved with the NRTL equation, using non-randomness parameter (α = 0.3) for the correlation. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvents.  相似文献   

11.
To simulate cyclohexane to cyclohexanol oxidation reactors, the acquisition and modeling of vapor-liquid equilibria of the key components, under the process conditions, are essential. n-Hexanoic acid is a co-product of the reaction. Vapor-liquid equilibrium data are reported for the cyclohexane + n-hexanoic acid binary system at four temperatures: 413, 423, 464 and 484 K. All measurements have been carried out using an apparatus based on the “static-analytic” method, with two ROLSI™ pneumatic capillary samplers. The generated data are successfully correlated using two equations of state, the Peng-Robinson (PR) and the Perturbed Chain Statistical Association Fluid Theory (PC-SAFT). Both models are capable of representing the experimental data, but the PC-SAFT EoS uses less binary interaction parameters.  相似文献   

12.
Microcalorimetric measurements of excess enthalpies at the temperature T = 298.15 K are reported for the binary mixture, (x1C6H12 + x2C4H8O) and the two ternary mixtures {x1C6H12 + x2(C4H8O or C5H10O) + x3(C5H12O)}. Smooth representations of the results are presented and used to construct constant excess molar enthalpy contours on Roozeboom diagrams. It is shown that good estimates of the ternary enthalpies can be obtained from the Liebermann and Fried model, using only the physical properties of the components and their binary mixtures.  相似文献   

13.
Isobaric vapor–liquid equilibrium (VLE) data of the reactive quaternary system ethanol (1) + water (2) + ethyl lactate (3) + lactic acid (4) have been determined experimentally. Additionally, the reaction equilibrium constant was calculated for each VLE experimental data. The experimental VLE data were correlated using the UNIQUAC equation to describe the chemical and phase equilibria simultaneously. For some of the non-reactive binary systems, UNIQUAC binary interaction parameters were obtained from the literature. The rest of the binary UNIQUAC parameters were obtained by correlating the experimental quaternary VLE data obtained in this work. A maximum pressure azeotrope at high water concentration for the binary reactive system ethyl lactate + water has been calculated.  相似文献   

14.
Mixtures of heavy aromatics with high aliphatics are important in the formation of asphaltenes in the oil industry.This work reports binary solid-liquid equilibria for naphtalene + eicosane, +pentacosane, +hexatriacontane mixtures by differential scanning calorimetry. Results are compared with those from modified UNIFAC (Larsen and Gmehling versions) and ideal predictions. Finally, we determine the purity according to van’t Hoff equation. Results are in good agreement with values given by ultraviolet spectrophotometry.  相似文献   

15.
Isothermal vapor-liquid equilibrium data at 333.15 K are reported for the ternary systems {di-methyl carbonate (DMC) + ethanol + benzene} and {DMC + ethanol + toluene} as determined with headspace gas chromatography. The experimental ternary vapor-liquid equilibrium (VLE) data were correlated with different activity coefficient models. The excess volume (VE) and deviations in molar refractivity (ΔR) data are reported for the binary systems {DMC + benzene} and {DMC + toluene} and also for the ternary systems {DMC + ethanol + benzene} and {DMC + ethanol + toluene} at 298.15 K. These VE and ΔR data were correlated with the Redlich-Kister equation for binary systems and the Cibulka equation for ternary systems.  相似文献   

16.
Total vapour pressures, measured at the temperature 313.15 K, are reported for the ternary mixture (N,N-dimethylacetamide + methanol + water), and for binary constituents (N,N-dimethylacetamide + methanol) and (N,N-dimethylacetamide + water). The present results are compared with previously obtained data for binary mixtures (amide + water) and (amide + methanol), where amide=N-methylformamide, N,N-dimethylformamide, N-methyl-acetamide, 2-pyrrolidinone and N-methylpyrrolidinone. Moreover, it was found that excess Gibbs free energy of mixing for binary mixtures varies roughly linearly with the molar volume of amide.  相似文献   

17.
Isobaric (vapour + liquid) equilibrium (VLE) data for {2-propanol (1) + water (2) + ammonium thiocyanate (3)} were obtained at 101.3 kPa experimentally. An all-glass Fischer-Labodest type still capable of handling pressures from (0.25 to 400) kPa and temperatures up to 523.15 K was used. (Vapour + liquid) equilibrium data of (2-propanol + water) were also obtained at 101.3 kPa experimentally. An equation is proposed to fit the data of salt-containing systems using dimensionless groups called relative ratio. The proposed model was also tested for the salt-containing systems given from the literature.  相似文献   

18.
Experimental density and the refractive index of the ternary mixture acetone + n-hexane + water, and their binary systems were experimentally measured and correlated at 298.15 K and atmospheric pressure. A maximum in refractive indices has been observed for the acetone + water system while the excess molar volume and the molar refraction change are all negative. For the mixture acetone + n-hexane, the excess molar volume is always positive and the molar refraction change of mixing showed a S-shaped dependence on acetone composition. The excess molar volumes and molar refraction changes of mixing were correlated using the Redlich-Kister expression and Cibulka equation. The coefficients and standard deviation between the experimental and fitted values were estimated. Good agreement between both results was obtained.  相似文献   

19.
(Liquid + liquid) equilibria and tie lines for the ternary systems of (water + phosphoric acid + 1-butanol) and (water + phosphoric acid + butyl acetate) were measured at T = 308.2 K. The experimental ternary (liquid + liquid) equilibrium data were correlated with the UNIQUAC model. The reliability of the experimental tie lines was confirmed using Othmer-Tobias correlation. The average root-mean-square deviation (RMSD) values of (water + phosphoric acid + 1-butanol) and (water + phosphoric acid + butyl acetate) systems were 2.17% and 2.16%, respectively. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvents. The results show that butyl acetate may be considered as a reliable organic solvent for the extraction of phosphoric acid from aqueous solutions.  相似文献   

20.
(Liquid + liquid) equilibrium (LLE) data for ternary system {heptane (1) + m-xylene (2) + N-formylmorpholine (3)} have been determined experimentally at temperatures ranging from 298.15 K to 353.15 K. Complete phase diagrams were obtained by determining solubility and tie-line data. Tie-line compositions were correlated by Othmer-Tobias and Bachman methods. The universal quasichemical activity coefficient (UNIQUAC) and The non-random two liquids equation (NRTL) were used to correlate the phase equilibrium in the system using the interaction parameters determined from experimental data. It is found that UNIQUAC and NRTL used for LLE could provide a good correlation. Distribution coefficients, separation factors, and selectivity were evaluated for the immiscibility region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号