首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density measurements are reported performed on three 1-alkyl-3-methylimidazolium-based ([Cn-mim], n=2,4,6n=2,4,6) ionic liquids with tetrafluoroborate anion at atmospheric pressure at 15 temperatures from 281 to 353 K. The buoyancy method was employed, using the microbalance of the Krüss K100MK2 tensiometer. At each temperature from 33 to 55 individual buoyancy readings were taken in most cases. The density average values at particular temperatures are presented with estimated total standard uncertainty less than ±0.4±0.4 kg m−3 (3.3 ×10−4?×104?). An empirical density–temperature equations have been developed describing the temperature dependence of each ionic liquid density. The 58 new experimental data points on the density–temperature relation of the three ionic liquids of interest are means calculated from about 3000 individual density readings, which have been altogether taken in the present study.  相似文献   

2.
The amount of available accurate experimental data on the surface tension of ionic liquids is still limited; in many cases the data are rare or even absent. In the present study, air-liquid interfacial tension data were determined experimentally for five 1-Cn-3-methylimidazolium based ionic liquids (n = 2, 4, and 6), three with trifluoromethanesulfonate and two with tetrafluoroborate anion, at atmospheric pressure in the temperature range from 268 to 356 K. The resultant surface tension data are average values of the measurements repeated many times at each set point temperature. The accuracy of the results, was confirmed by employing the Wilhelmy plate and the du Noüy ring methods in parallel, using the Krüss K100MK2 tensiometer. For the Wilhelmy plate data the combined standard uncertainty is estimated to be about 0.05 mN m−1. The data obtained by du Noüy method show about up to seven times greater scatter than those obtained by the Wilhelmy plate method. To the 50 up to now published surface tension values for the five studied ionic liquids the present study adds further 175 data points. In contrast to that of n-alkanes, the surface tension of 1-alkyl-3-methylimidazolium based ionic liquids decreases and their surface entropy increases with the cation alkyl chain length.  相似文献   

3.
This brief review presents the recent development in the synthesis of cyclic carbonate from carbon dioxide (CO2) using ionic liquids as catalyst and/or reaction medium. The synthesis of cyclic carbonate includes three aspects: catalytic reaction of CO2 and epoxide, electrochemical reaction of CO2 and epoxide, and oxidative carboxylation of olefin. Some ionic liquids are suitable catalysts and/or solvents to the CO2 fixation to produce cyclic carbonate. The activity of ionic liquid is greatly enhanced by the addition of Lewis acidic compounds of metal halides or metal complexes that have no or low activity by themselves. Using ionic liquids for the electrochemical synthesis of the cyclic carbonate can avoid harmful organic solvents, supporting electrolytes and catalysts, which are necessary for conventional electrochemical reaction systems. Although the ionic liquid is better for the oxidative carboxylation of olefin than the ordinary catalysts reported previously, this reaction system is at a preliminary stage. Using the ionic liquids, the synthesis process will become greener and simpler because of easy product separation and catalyst recycling and unnecessary use of volatile and harmful organic solvents.  相似文献   

4.
(Liquid + liquid) miscibility temperatures as a function of composition have been determined experimentally for the binary systems formed by imidazolium based ionic liquids with bis(trifluoromethylsulfonyl)imide ([CnMIM][NTf2]: n = 3 to 10) with fluorobenzene, chlorobenzene, bromobenzene, iodobenzene and 1,2-dichlorobenzene. In addition, the phase diagrams for deuterated chlorobenzene, bromobenzene and 1,2-dichlorobenzene have been obtained. All the measured systems show the limited miscibility with the upper critical solution temperature behavior. Similarly to the other systems with the imidazolium cation the increase of the alkyl chain length in this cation improves the miscibility. The impact of the halogenobenzene is also very visible. The miscibility is improving in the order: iodobenzene < bromobenzene < chlorobenzene < fluorobenzene. This arrangement corresponds to the decreasing molar volume of the substituted benzenes. The disubstituted chlorobenzene is a better solvent for ionic liquids than chlorobenzene. The replacement of hydrogen for deuterium in halogenobenzenes in all cases improves the miscibility and the isotope shifts of the UCSTs are very large.  相似文献   

5.
The viscosities of the mixtures 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF6]) + CO2 and 1-octyl-3-methylimidazolium hexafluorophosphate ([OMIM][PF6]) + CO2 were measured with a rolling ball viscometer. The CO2 mole fraction for one mixture ranged up to 0.434 and the other up to 0.447. The viscosities were measured at 293.15-353.15 K and 10-20.0 MPa. The experimental uncertainty in viscosity was estimated to be within ±3.0%. The experimental data were compared with McAllister's three-body model, which correlated with the experimental data within average absolute deviations of 5.9%.  相似文献   

6.
In this work, the phase behaviour of the binary system of carbon dioxide and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) has been studied experimentally. The equipment used for the experiments is the Cailletet set-up, based on visual observations of phase transitions of systems with constant overall composition. Results are reported for carbon dioxide concentrations ranging from 12.3 to 59.3 mol%, and within temperature and pressure ranges of 310–450 K and 0–15 MPa, respectively. The data reveal an extremely high capacity of the selected ionic liquid for dissolving CO2 gas, for example, reaching up to about 60 mol% within the above-mentioned pressure and temperature range. Also, the solubility of CO2 in the ionic liquid [emim][Tf2N] is compared to the solubility of CO2 in the ionic liquid [emim][PF6], an ionic liquid that shares the same cation.  相似文献   

7.
Room temperature ionic liquids (RTIL) are molten salts that are liquids at room temperature. Their liquid state makes them possible candidates as solvents in countercurrent chromatography (CCC), which uses solvents as both the mobile and stationary phases. The study focuses on 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF6), an easy to synthesize and purify RTIL whose melting point is –8°C. It is shown that BMIM PF6 behaves like a solvent of significant polarity (comparable with that of ethanol). The ternary phase diagram water–acetonitrile–BMIM PF6 is given, because it was necessary to add acetonitrile to reduce the ionic liquid viscosity. The 40:20:40% w/w water–acetonitrile–BMIM PF6 biphasic liquid system was found to be appropriate as a biphasic liquid system for CCC. Different aromatic solutes, including bases, acids, and neutral compounds, were injected into the CCC column to estimate their distribution constants between the ionic liquid-rich phase and the aqueous phase. The resulting Kil/w constants were compared with the corresponding literature octanol–water partition coefficients, Ko/w. The important drawbacks in the use of RTIL in CCC are clearly pointed out: high viscosity producing pressure build-up, UV absorbance limiting the use of the convenient UV detector, and non-volatility precluding the use of the evaporative light-scattering detector for continuous detection.  相似文献   

8.
Photoinduced electron transfer in two room-temperature ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF(6)) and 1-octyl-3-methylimidazolium hexafluorophosphate (OMIM-PF(6)), has been investigated using steady-state fluorescence quenching of 9,10-dicyanoanthracene with a series of single electron donors. From these fluorescence quenching rates, reorganization energy (lambda) values and k(diff) values can be derived from a Rehm-Weller analysis. In many cases, these fluorescence quenching reactions occur at rates larger than what would be expected based on the Smoluchowski equation. In addition, lambda values of 10.1 kcal/mol and 16.3 kcal/mol for BMIM-PF(6) and OMIM-PF(6), respectively, have been determined.  相似文献   

9.
This study deals with the influence of different inorganic and organic salts made up with sodium, potassium and ammonium cations to induce phase segregation in aqueous solutions of C8C1imCl and C10C1imCl at T = 298.15 K. The experimental solubility values are described by means of four empirical equations and the suitability of the models was analysed in the light of the standard deviation. The capability of the above mentioned salts to further phase de-mixing is discussed on the basis of their different molar Gibbs free energy of hydration (ΔhydG), molar entropy of hydration (ΔhydS) and pH. The efficiency of the separation was evaluated by determining the tie-lines, and these experimental values were fitted to three known models such as Bancroft, Othmer–Tobias and modified Setschenow equations.  相似文献   

10.
X-ray diffraction measurements for the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4], mixed with CO2 were carried out at high pressures using our developed polymer cell. The intermolecular distribution functions obtained for [BMIM][BF4]–CO2 mixtures showed that CO2 molecules are preferentially solvated to the [BF4] anion. The similar preferential solvation was previously observed in analogous 1-btuyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF6], with a different anion, which is in harmony with the present results in [BMIM][BF4]–CO2.  相似文献   

11.
Densities ρ, speeds of sound u, and refractive indices nD were measured from T = (278.15 to 343.15) K. Dynamic viscosities η were measured from T = (293.15 to 323.15) K. Surface tensions σ were determined from T = (288.15 to 313.15) K. The physical properties data were measured at atmospheric pressure. The coefficients of thermal expansion αp of the ionic liquids were calculated from the experimental values of the density at several temperatures. The Parachor method was used to predict the densities, the refractive indices, and the surface tensions of the ionic liquids, and a comparison between experimental and predictive values was made at T = 298.15 K.  相似文献   

12.
A simple model was developed to predict the solubility of carbon dioxide (CO2) in ionic liquids under normal processing and conditioning pressures for natural gas fluids. COSMO-RS was used to predict the unsymmetrical activity coefficients for CO2 in ILs, and the Peng-Robinson equation of state was used to calculate the CO2 fugacity coefficient. Using these two quantities, a correlation was developed which can be used to extrapolate solubilities for ILs where experimental data is not available. This study shows that the molecular mass of the ILs is an effective parameter to correlate the Henry's constant of CO2.  相似文献   

13.
New experimental results are presented for the solubility of carbon dioxide, hydrogen sulfide in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate ([C8mim][PF6]) at temperatures range from (303.15 to 353.15) K and pressures up to about 2 MPa. The solubility of the mixture of CO2/H2S in [C8mim][PF6] under various feed compositions were also measured at temperatures of (303.15, 323.15 and 343.15) K and the pressure up to 1 MPa. The solubility of carbon dioxide and hydrogen sulfide increased with increasing pressure and decreased with increasing temperature and the solubility of H2S is about three times that of CO2 in the particular ionic liquid studied. The measured data were correlated using extended Henry’s law included Pitzer’s virial expansion for the excess Gibbs energy, and the generic Redlich–Kwong cubic equation of state proposed for gas/ionic liquid systems. The correlations from the two models show quite good consistency with the experimental data for CO2/IL and H2S/IL binary mixtures within experimental uncertainties. For CO2/H2S/IL ternary mixtures, the RK model shows better correlation with the experimental values. We also studied the effect of cation alkyl chain length on the CO2 and H2S solubility by comparison of the experimental data of this study with those of previous reports. As the cation alkyl chain length became longer, the solubility of CO2 and H2S increased in the ionic liquid. Additionally, the influence of the anion on the solubility is studied by comparing the solubility of CO2 and H2S in [C8mim][PF6] with those in [C8mim][Tf2N]. As a result, CO2 and H2S have higher solubility in the IL with [Tf2N] as the anion.  相似文献   

14.
Ionic dynamics in room temperature molten salts (ionic liquids) containing 1-alkyl-3-methylimidazolium cations is investigated by molecular-dynamics simulations. Calculations were performed with united atom models, which were used in a previous detailed study of the equilibrium structure of ionic liquids [S. M. Urahata and M. C. C. Ribeiro, J. Chem. Phys. 120, 1855 (2004)]. The models were used in a systematic study of the dependency of several single particle time correlation functions on anion size (F-, Cl-, Br-, and PF6-) and alkyl chain length (1-methyl-, 1-ethyl-, 1-butyl-, and 1-octyl-). Despite of large mass and size of imidazolium cations, they exhibit larger mean-square displacement than anions. A further detailed picture of ionic motions is obtained by using appropriate projections of displacements along the plane or perpendicular to the plane of the imidazolium ring. A clear anisotropy in ionic displacement is revealed, the motion on the ring plane and almost perpendicular to the 1-alkyl chain being the less hindered one. Similar projections were performed on velocity correlation functions, whose spectra were used to relate short time ionic rattling with the corresponding long time diffusive regime. Time correlation functions of cation reorientation and dihedral angles of the alkyl chains are discussed, the latter decaying much faster than the former. A comparative physical picture of time scales for distinct dynamical processes in ionic liquids is provided.  相似文献   

15.
The phase behavior of carbon dioxide (CO2) and the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) was measured and correlated at high pressures up to ∼40 MPa and at temperatures between 353.15 K and 373.15 K. The solubility data of CO2 in [bmim][Cl] were obtained by observing the bubble point pressure at specific temperatures. A variable-volume view cell, which is a high-pressure equilibrium apparatus, was used to measure the CO2 + [bmim][Cl] system solubility under varying pressure and temperature conditions. In addition, liquid–liquid–vapor (LLV) three-phase behavior was investigated using the equilibrium cell to be able to determine the classification of phase-behavior type by Scott and Van Konynenburg. Based on the LLV phase behavior, this system most likely has type III phase-behavior which is common for IL + CO2 systems. The resulting data showed that CO2 dissolved well in the IL at low CO2 concentrations, but that the pressure derivative of CO2 solubility dramatically decreased as the mole fraction of CO2 was increased. The experimental data were well fitted by the Peng–Robinson equation of state with a quadratic mixing rule and cubic parameters estimated by the Joback method.  相似文献   

16.
Knowledge of drug solubility data in supercritical carbon dioxide (SC-CO2) is a fundamental step in producing nano and microparticles through supercritical fluid technology. In this work, for the first time, the solubility of metoclopramide hydrochloride (MCP) in SC-CO2 was measured in pressure and temperature range of 12 to 27 MPa and 308 to 338 K, respectively. The results represented a range mole fractions of 0.15 × 10-5 to 5.56 × 10-5. To expand the application of the obtained data, six semi-empirical models and three models based on the Peng-Robinson equation of state (PR + VDW, PR + WS + Wilson and PR + MHV1 + COSMOSAC) with different mixing rules and various ways to describe intermolecular interactions were investigated. Furthermore, total enthalpy, sublimation enthalpy and solvation enthalpy relevant to MCP solvating in SC-CO2 were estimated.  相似文献   

17.
Room-temperature ionic liquids (ILs) are liquids that are constituted entirely of ions and can provide a solvent environment quite unlike any other available at room temperature. They continue to attract considerable interest in the chemistry research community as they are good solvents for a wide range of both inorganic and organic materials. In this study, a CZE method has been established for resolving natural flavonoids, quercetin, kaempferol and isorhamnetin in the Chinese herbal extract from Hippophae rhamnoides and its medicinal preparation (Sindacon Tablet). In this method, 1-alkyl-3-methyl-imidazolium-based ILs are used as the additive, and the effects of the alkyl group, imidazolium counterion (anionic part), along with the concentration of IL are investigated and discussed. Baseline separation, high efficiencies and symmetrical peaks of the three flavonoids were obtained. The separation mechanism seems to be the hydrogen-bonding interaction between the imidazolium cations of IL and the flavonoids.  相似文献   

18.
Artemisinin is an effective antimalarial drug isolated from the herbal medicine Artemisia annua L. Supercritical fluid extraction is an environment-friendly method for the extraction of artemisinin. In this work, the solubility of artemisinin in supercritical carbon dioxide was determined by static method at three temperatures of 313 K, 323 K, 333 K and pressures from 11 to 31 MPa. The range of experimental solubility data was from 0.498 × 10−3 to 2.915 × 10−3 mol/mol under the above-mentioned conditions. Two density-based models (Chrastil and Mendez–Santiago–Teja models) were selected to correlate the experimental data of this work, and the average absolute relative deviation (AARD) was 8.32% and 8.33%, respectively. The correlation results showed good agreement with the experimental data.  相似文献   

19.
Systems containing 1-alkyl-3-methylimidazolium chloride ionic liquid and chlorine gas were investigated. Using relativistic density functional theory, we calculated the formation mechanism of trichloride and hydrogen dichloride anions in an Emim(+)Cl(-) + Cl(2) system. Emim(+)Cl(3)(-) forms without energy barriers. The more stable species ClEmim(+)HCl(2)(-) forms through chlorine substitution. Substitution of a H on the imidazolium ring is much easier than substitution on the alkyl side chains. Infrared, Raman, ESI-MS, and (1)H NMR spectra were measured for EmimCl, BmimCl, and DmimCl with and without Cl(2) gas. The coexistence of Cl(3)(-) and HCl(2)(-), as well as chlorine-substituted cations, was confirmed by detection of their spectroscopic signals in the Cl(2) added ionic liquids. Cl substitution appears less serious for cations with longer side chains.  相似文献   

20.
Three kinds of ionic liquids, 1-alkyl-3-methylimidazolium tetrafluoroborate (n=2–4), were prepared and fundamental properties of ionic liquids and those mixed with industrially used organic solvents (PC, GBL and AN) were investigated compared to solid salts, TEMABF4. It was found that degree of ionization of the ionic liquids were almost same as that of TEMABF4 from the conductivity measurement in diluted system of PC. The ionic liquids and the organic solvents intermingle with each other. Some enhancement in conductivity was observed compared to TEMABF4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号