首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents new experimental liquid–liquid equilibrium data for four ternary systems, containing cyclohexanone, cyclohexene and ionic liquids (1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium tetrafluoroborate, triethylammonium trifluoromethanesulfonate, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate) at temperature 296.15 K and at atmospheric pressure. Compositions of ternary liquid mixtures were determined using refractometric methods. It was shown that 1-ethyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-3-methylimidazolium hexafluorophosphate containing imidazole cations can be considered as solvent for oxidation of cyclohexene to cyclohexanone.  相似文献   

2.
Experimental (liquid + liquid) equilibria involving ionic liquids {1,3-dimethylimidazolium methyl sulfate (MMIM MeSO4)}, {2-propanol + ethyl acetate + 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF6)} and {2-propanol + ethyl acetate + 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIM PF6)} were carried out to separate the azeotropic mixture ethyl acetate and 2-propanol. Selectivity and distribution ratio values, derived from the tie-lines data, were presented in order to analyze the best separation solvent in a liquid extraction process. Experimental (liquid + liquid) equilibria data were compared with the correlated values obtained by means of the NRTL, Othmer-Tobias and Hand equations. These equations were verified to accurately correlate the experimental data.  相似文献   

3.
The viscosities of the mixtures 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF6]) + CO2 and 1-octyl-3-methylimidazolium hexafluorophosphate ([OMIM][PF6]) + CO2 were measured with a rolling ball viscometer. The CO2 mole fraction for one mixture ranged up to 0.434 and the other up to 0.447. The viscosities were measured at 293.15-353.15 K and 10-20.0 MPa. The experimental uncertainty in viscosity was estimated to be within ±3.0%. The experimental data were compared with McAllister's three-body model, which correlated with the experimental data within average absolute deviations of 5.9%.  相似文献   

4.
The phase behavior of carbon dioxide (CO2) and the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) was measured and correlated at high pressures up to ∼40 MPa and at temperatures between 353.15 K and 373.15 K. The solubility data of CO2 in [bmim][Cl] were obtained by observing the bubble point pressure at specific temperatures. A variable-volume view cell, which is a high-pressure equilibrium apparatus, was used to measure the CO2 + [bmim][Cl] system solubility under varying pressure and temperature conditions. In addition, liquid–liquid–vapor (LLV) three-phase behavior was investigated using the equilibrium cell to be able to determine the classification of phase-behavior type by Scott and Van Konynenburg. Based on the LLV phase behavior, this system most likely has type III phase-behavior which is common for IL + CO2 systems. The resulting data showed that CO2 dissolved well in the IL at low CO2 concentrations, but that the pressure derivative of CO2 solubility dramatically decreased as the mole fraction of CO2 was increased. The experimental data were well fitted by the Peng–Robinson equation of state with a quadratic mixing rule and cubic parameters estimated by the Joback method.  相似文献   

5.
Hirayama N  Deguchi M  Kawasumi H  Honjo T 《Talanta》2005,65(1):255-260
Possible use of room temperature ionic liquids (RTILs) as chelate extraction solvent was evaluated by using 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF6]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][PF6]). These RTILs showed high extraction performance for divalent metal cations with 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (Htta). The extracted metals were back-extracted into 1 mol dm−3 nitric acid quantitatively. Furthermore, the extracted species were estimated as neutral hydrated complexes M(tta)2(H2O)n (n= 1 or 2) for M = Ni, Cu and Pb and anionic complexes M(tta)3 for M = Mn, Co, Zn and Cd.  相似文献   

6.
Osmotic coefficients of binary mixtures containing an ionic liquid, (1-butyl-3-methylimidazolium tetrafluoroborate, [BMIm]BF4, 1-ethyl-3-methylimidazolium ethyl sulfate, [EMIm]ES, and 1-butyl-3-methylimidazolium methyl sulfate, [BMIm]MS) with water were measured until about 3 molal concentrations using vapor pressure osmometry method (VPO) at temperature ranges 298.15–328.15 K and modeled using different electrolyte excess Gibbs free energy models including electrolyte non-random two liquids (NRTL), modified NRTL (MNRTL), mean spherical approximation NRTL (MSA-NRTL), non random factor (NRF), and extended Wilson models. The results show that osmotic coefficient data increase with increasing temperature. The calculated standard deviations of the studied systems show that the applicability of these models for the correlation of VLE properties of ionic liquid solutions. The average standard deviations for the models have the order σ(?) MNRTL < σ(?) Wilson < σ(?) NRTL < σ(?) MSA-NRTL < σ(?)NRF. The results show MNRTL model is able to reproduce experimental osmotic coefficients of aqueous solution of studied ionic liquids with good precision.  相似文献   

7.
The partial molar volume of a gas that is dissolved at high dilution in a solvent is required to express the influence of pressure on Henry's constant as well as to describe the volume change (expansion) of the liquid caused by the dissolved gas. The correlations of recently published experimental results for the solubility of some selected gases (CO2, Xe, CH4, CF4, H2, CO, O2) in three imidazolium-based ionic liquids (1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), 1-n-butyl-3-methylimidazolium methyl sulfate ([bmim][CH3SO4]), and 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N])) determined by the synthetic method were re-evaluated by also considering the experimentally determined volumetric properties. The new evaluation does not change the published results for Henry's constants, but additionally yields reliable information on the partial molar volume of those gases in the mentioned ionic liquids at temperatures from about 293 to 413 K.  相似文献   

8.
Experimental results for the solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate are not reported in the literature. To this end, we present in this work new solubility data for carbon dioxide in 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate for temperatures ranging from (303.2 to 343.2) K and pressures up to 6.7 MPa using a thermogravimetric microbalance. The carbon dioxide solubility was determined from absorption saturation (equilibrium) data at each fixed temperature and pressure. The buoyancy effect was accounted in the evaluation of the carbon dioxide solubility. Highly accurate equations of states for carbon dioxide and for ionic liquids were employed to determine the effect of buoyancy on carbon dioxide solubility. The solubility measurements are presented as a function of temperature and pressure. The present experimental solubility results have been successfully correlated using an extended Henry’s law equation.  相似文献   

9.
Densities and viscosities were determined for binary mixtures of 2,2,2-trifluoroethanol (TFE) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) or 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([bmim][NTf2]) over the entire range of composition. The experimental measurements were carried out at temperatures ranging from 278.15 K to 333.15 K, at atmospheric pressure. The densities and viscosities of the pure ionic liquids and their mixtures with TFE were described successfully by an empirical third-order polynomial and by the Vogel–Fulcher–Tammann equation, respectively. In addition, excess molar volumes and viscosity deviations were determined from densities and viscosities of mixtures, respectively, and fitted by using the Redlich–Kister equation.  相似文献   

10.
A sensor array system consisting of five quartz crystal microbalance (QCM) sensors (four for measuring and one for reference) and an artificial neural network (ANN) method is presented for on-line detection of volatile organic compounds. Three ionic liquids, 1-butyl-3-methylimidazolium chloride (C4mimCl), 1-butyl-3-methylimidazolium hexafluorophosphate (C4mimPF6), 1-dedocyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C4mimNTf2), and silicone oil II, which is widely used as gas chromatographic stationary phase, have been selected as sensitive coatings on the quartz surface allowing the sensor array effective to identify chemical vapors, such as toluene, ethanol, acetone and dichloromethane. The success rate for the qualitative recognition reached 100%. Quantitative analysis has also been investigated, within the concentration range of 0.6-6.1 mg/L for toluene, 0.9-7.5 mg/L for ethanol, 2.8-117 mg/L for dichloromethane, and 0.7-38 mg/L for acetone, with a prediction error lower than 8%.  相似文献   

11.
The solubility of hydrogen sulfide in a series of 1-(2-hydroxyethyl)-3-methylimidazolium ([HOemim]+)-based ionic liquids (ILs) containing different anions, viz. hexafluorophosphate ([PF6]), trifluoromethanesulfonate ([OTf]), and bis-(trifluoromethyl)sulfonylimide ([Tf2N]) at temperatures ranging from 303.15 to 353.15 K and pressures of up to about 1.8 MPa was measured by a volumetric based static apparatus. The solubility data were correlated using two models: (1) the Krichevsky–Kasarnovsky equation and (2) the extended Henry's law combined with the Pitzer's virial expansion for the excess Gibbs energy. Henry's law constants (at zero pressure) in mole-fraction and molality scales were obtained at different temperatures by means of these two models. Using the solubility data, the partial molar thermodynamic functions of solution, i.e. Gibbs energy, enthalpy, and entropy were calculated. Comparison showed that the solubility of H2S is greater than that of CO2 in the corresponding ILs studied in this work and that the solubility of both gases increases as the number of trifluoromethyl (–CF3) groups in the anion increases, i.e. the solubility behavior of both gases follows the order [HOemim][Tf2N] ≥ [HOemim][OTf] > [HOemim][PF6] > [HOemim][BF4].  相似文献   

12.
The glycolysis of poly(ethylene terephthalate) (PET) was studied using several ionic liquids and basic ionic liquids as catalysts. The basic ionic liquid, 1-butyl-3-methylimidazolium hydroxyl ([Bmim]OH), exhibits higher catalytic activity for the glycolysis of PET, compared with 1-butyl-3-methylimidazolium bicarbonate ([Bmim]HCO3), 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) and 1-butyl-3-methylimidazolium bromide ([Bmim]Br). FT-IR, 1H NMR and DSC were used to confirm the main product of glycolysis was bis(2-hydroxyethyl) terephthalate (BHET) monomer. The influences of experimental parameters, such as the amount of catalyst, glycolysis time, reaction temperature, and dosages of ethylene glycol on the conversion of PET, yield of BHET were investigated. The results showed a strong influence of the mixture evolution of temperature and reaction time on depolymerization of PET. Under the optimum conditions of m(PET):m(EG): 1:10, dosage of [Bmim]OH at 0.1 g (5 wt%), reaction temperature 190 °C and time 2 h, the conversion of PET and the yield of BHET were 100% and 71.2% respectively. Balance between the polymerization of BHET and depolymerization of PET could be changed when the reaction time was more than 2 h and contents of catalyst and EG were changed.  相似文献   

13.
Vapour–liquid equilibrium measurements for binary and ternary systems containing carbon dioxide, 1-propanol, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquids are presented in this work. The binary CO2 + 1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide system at 313.15 K at pressure range from 2 to 14.4 MPa was examined. The obtained phase envelop shows that even at low pressure of CO2 the solubility of the gas in the ionic liquid is high. The ternary phase equilibria were studied at 313.15 K and pressures in the range from 9 to 12 MPa. The ternary phase diagrams show that higher CO2 pressure diminishes the miscibility gap.  相似文献   

14.
A simple analytical method, based on the coupling of ionic liquid-based extraction with high performance liquid chromatography (HPLC), is developed for the determination of Sudan dyes (I, II, III and IV) and Para Red in chilli powder, chilli oil and food additive samples. Two ionic liquids (ILs), 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([C8mim][PF6]), were compared as extraction solvents; experiments indicated that the latter possesses higher recoveries for each analyte. Parameters related to extraction of Sudan dyes and Para Red were also optimized. Under the optimal conditions, good reproducibility of extraction performance was obtained, with the relative standard deviation (RSD) values ranging from 2.0% to 3.5%. The detection limits of Sudan dyes and Para Red (LOD, S/N = 3) were in the range of 7.0-8.2 μg kg−1 for chilli powder and 11.2-13.2 μg L−1 for chilli oil and food additive. The recoveries were in the range of 76.8-109.5% for chilli powder samples and 70.7-107.8% for chilli oil and food additive samples.  相似文献   

15.
Qijin Wan  Fen Yu  Lina Zhu  Xiaoxia Wang 《Talanta》2010,82(5):1820-1825
Femtomolar (fM) leveled lead ions were electrochemically detected using a bucky-gel coated glassy carbon electrode and differential pulse anodic stripping voltammetry. The bucky-gel was composed of dithizone, ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate), and multi-walled carbon nanotubes (MWCNTs). The fabrication of the bucky-gel coated electrode was optimized. The modified electrode was characterized with voltammetry, electrochemical impedance spectroscopy, and chronoamperometry. After the accumulation of lead ions into the bucky-gel modified electrode at −1.2 V vs. saturated calomel electrode (SCE) for 5 min in a pH 4.4 sodium acetate-acetate acid buffer solution, differential pulse anodic stripping voltammograms of the accumulated lead show an anodic wave at −0.58 V. The anodic peak current is detectable for lead ions in the concentration range from 1.0 μM down to 500 fM. The detection limit is calculated to be 100 fM. The proposed method was successfully applied for the detection of lead ions in lake water.  相似文献   

16.
Cerium trifluoride have great potential in material applications for luminescent materials, composite materials or ionic conductors especially in the form of nanoparticles and nanoobjects. In this work, nanoparticles of CeF3 were prepared by simple one pot reaction of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6) with CeO2 and by reaction of CeO2 with KPF6 in ionic liquid 1-butyl-3-methylimidazolium chloride (bmimCl). Prepared nanoparticles were analyzed by XRD and SEM analysis. Average diameter of prepared nanoparticles resulting from Sherrer formula is 12 nm. Nanoparticles did not form ordered agglomerates and could be used in the form of separate nanoparticles which are desired in some applications.  相似文献   

17.
Density, isobaric molar heat capacity, and excess molar enthalpy were experimentally determined at atmospheric pressure for a set of binary systems ionic liquid + nitromethane. The studied ionic liquids were: 1-butyl-3-methylimidazolium tetrafluoroborate, 1-hexyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylpyridinium tetrafluoroborate, 1-ethyl-3-methylimidazolium ethylsulfate, 1-butyl-3-methylimidazolium methylsulfate, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, and 1-butyl-3-methylimidazolium trifluoromethanesulfonate. Density and heat capacity were obtained within the temperature range (293.15 to 318.15) K whereas excess molar enthalpy was measured at 303.15 K; excess molar volume and excess molar isobaric heat capacity were calculated from experimental data. The ERAS-model was applied in order to study the microscopic mechanisms involved in the mixing process. Although the studied compounds are not self-associated, ERAS-model describe adequately the experimental results if cross-association between both compounds is considered.  相似文献   

18.
The relatively hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate has been found to be totally miscible with aqueous ethanol between 0.5 and 0.9 mol fraction ethanol, whereas the ionic liquid is only partially miscible with either pure water or absolute ethanol; the ability to dissolve 1-butyl-3-methylimidazolium hexafluorophosphate in a 'green' aqueous solvent system has important implications for cleaning, purification, and separations using ionic liquids.  相似文献   

19.
《Fluid Phase Equilibria》2006,242(2):147-153
Isobaric vapor–liquid equilibrium (VLE) data for ethanol–water systems containing ionic liquids (ILs) 1-methyl-3-methylimidazolium dimethylphosphate ([MMIM][DMP]), 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]), 1-butyl-3-methylimidazolium bromide ([BMIM][Br]), 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) at atmospheric pressure (101.32 kPa) were measured with a circulation still. The results showed that the VLE of ethanol–water systems in the presence of different ILs was obviously different from that of the IL-free system. All ILs studied showed a salting-out effect, which gave rise to a change of the relative volatility of ethanol, and even to an elimination of the azeotropic point. It was found that the salting-out effect followed the order of [BMIM][Cl] > [BMIM][Br] > [BMIM][PF6] and [MMIM][DMP] > [EMIM][DEP], which was ascribed to the preferential solvation ability of the ions resulting from the dissociation of the IL.  相似文献   

20.
Partition coefficients of organic compounds in four ionic liquids: 1-ethanol-3-methylimidazolium tetrafluoroborate, 1-ethanol-3-methylimidazolium hexafluorophosphate, 1,3-dimethylimidazolium dimethylphosphate and 1-ethyl-3-methylimidazolium diethylphosphate were measured using inverse gas chromatography from 303.3 to 332.55 K. The influence of gas–liquid and gas–solid interfacial adsorption of different solutes on ionic liquids was also studied. Most of the polar solutes were retained largely by partition while light hydrocarbons were retained predominantly by interfacial adsorption on the ionic liquids studied in this work. The solvation characteristics of the ionic liquids were evaluated using the Abraham solvation parameter model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号