首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A rabbit antibody immunoaffinity (IA) column procedure was evaluated as a cleanup method for the determination of atrazine in soil, sediment, and food. Four IA columns were prepared by immobilizing a polyclonal rabbit anti-atrazine antibody solution to HiTrap Sepharose columns. Atrazine was bound to the IA columns when the loading solvents were either 100% water, 2% acetonitrile in water, or 10% methanol in phosphate buffered saline (PBS). Quantitative removal of atrazine from the IA columns was achieved with elution solvents of either 70% ethanol in water, 70% methanol in water, or 100% methanol. One control column was prepared using nonspecific rabbit IgG antibody. This control column did not retain any applied atrazine indicating atrazine did not bind indiscriminately to protein or the Sepharose support. The four IA columns showed reproducible coupling efficiency for the immobilization of the atrazine antibody and consistent binding and releasing of atrazine. The coupling efficiency (4.25 mg of antibody in 1 mL of resin bed) for the four IA columns ranged from 93 to 97% with an average of 96 ± 2% (2.1%). Recoveries of the 500, 50, and 5 ng mL−1 atrazine standard solutions from the four IA columns were 107 ± 7% (6.5%), 122 ± 14% (12%), and 114 ± 9% (8.0%) respectively, based on enzyme-linked immunosorbent assay (ELISA) data. The maximum loading was approximately 700 ng of atrazine for each IA column (∼0.16 μg of atrazine per mg of antibody). The IA columns could withstand 100% methanol as the elution solvent and could be reused more than 50 times with no change in performance. The IA columns were challenged with soil, sediment, and duplicate-diet food samples and effectively removed interferences from these various matrices for subsequent gas chromatography/mass spectrometry (GC/MS) or ELISA analysis. The log-transformed ELISA and GC/MS data were significantly correlated for soil, sediment and food samples although the ELISA values were slightly higher than those obtained by GC/MS. The IA column cleanup procedure coupled with ELISA analysis could be used as an alternative effective analytical method for the determination of atrazine in complex sample media such as soil, sediment, and food samples.  相似文献   

2.
The increasing global adoption of genetically modified (GM) plant derivatives in animal feed has provoked a strong demand for an appropriate detection method to evaluate the existence of transgenic protein in animal tissues and animal by-products derived from GM plant fed animals. A highly specific and sensitive sandwich enzyme immunoassay for the surveillance of transgenic Cry1Ab protein from Bt-maize in the blood plasma of cows fed on Bt-maize was developed and validated according to the criteria of EU-Decision 2002/657/EC. The sandwich assay is based on immuno-affinity purified polyclonal antibody raised against Cry1Ab protein in rabbits. Native and biotinylated forms of this antibody served as capture antibody and detection antibody for the ELISA, respectively. Streptavidin-horseradish peroxidase conjugate and TMB substrate provided the means for enzymatic colour development.The immunoassay allowed Cry1Ab protein determination in bovine blood plasma in an analytical range of 0.4-100 ng mL−1 with a decision limit (CCα) of 1.5 ng mL−1 and detection capability (CCβ) of 2.3 ng mL−1. Recoveries ranged from 89 to 106% (mean value of 98%) in spiked plasma.In total, 20 plasma samples from cows (n = 7) fed non-transgenic maize and 24 samples from cows (n = 8) fed transgenic maize (collected before and, after 1 and 2 months of feeding) were investigated for the presence of the Cry1Ab protein. There was no difference amongst both groups (all the samples were below 1.5 ng mL−1; CCα). No plasma sample was positive for the presence of the Cry1Ab protein at CCα and CCβ of the assay.  相似文献   

3.
A rapid and sensitive immunoassay for the determination of linear alkylbenzene sulfonates (LAS) is described. The method involves a sequential injection analysis (SIA) system equipped with a chemiluminescence detector and a neodymium magnet. Magnetic beads, to which an anti-LAS monoclonal antibody was immobilized, were used as a solid support in an immunoassay. The introduction, trapping and release of the magnetic beads in the flow cell were controlled by means of a neodymium magnet and adjusting the flow of the carrier solution. The immunoassay was based on an indirect competitive immunoreaction of an anti-LAS monoclonal antibody on the magnetic beads and the LAS sample and horseradish peroxidase (HRP)-labeled LAS, and was based on the subsequent chemiluminscence reaction of HRP with hydrogen peroxide and p-iodophenol, in a luminol solution. The anti-LAS antibody was immobilized on the beads by coupling the antibody with the magnetic beads after activation of a carboxylate moiety on the surface of magnetic beads that had been coated with a polylactic acid film. The antibody immobilized magnetic beads were introduced, and trapped in the flow cell equipped with the neodymium magnet, an LAS solution containing HRP-labeled LAS at constant concentration and the luminol solution were sequentially introduced into the flow cell based on an SIA programmed sequence. Chemiluminescence emission was monitored by means of a photon counting unit located at the upper side of the flow cell by collecting the emitted light with a lens. A typical sigmoid calibration curve was obtained, when the logarithm of the concentration of LAS was plotted against the chemiluminescence intensity using various concentrations of standard LAS samples (0-500 ppb) under optimum conditions. The time required for analysis is less than 15 min.  相似文献   

4.
Generic simple and sensitive universal enzyme immunoassay approach for the determination of small analytes has been developed to avert the problems associated with small molecule immobilization onto solid phases. The developed assay employed a heterogeneous non-competitive binding format. The assay used anti-analyte antibody coupled to polyacrylamide beads as a solid-phase and β-d-galactosidase enzyme-labeled analyte as a label. In this assay, the analyte in a sample was firstly incubated to react with an excess of the antibody-coupled beads, and then the unoccupied antibody binding sites were allowed to react with the enzyme-labeled analyte. Analyte bound to the antibody-coupled beads was separated by centrifugation, and the enzyme activity of the supernatant was measured spectrophotometrically at 420 nm, after reaction with 4-nitrophenyl-β-d-galactopyranoside as a substrate for the enzyme. The signal was directly proportional to the concentration of analyte in the sample. The optimum conditions for the developed assay were established and applied to the determination of tobramycin, as a representative example of the small analytes, in serum samples. The assay limit of detection was 10 ng mL−1 and the effective working range at relative standard deviation of ≤10% was 40-800 ng mL−1. The assay precisions were acceptable; the relative standard deviations were 4.36-5.17 and 5.62-7.40% for intra- and inter-assay precision, respectively. Analytical recovery of tobramycin spiked in serum ranged from 95.89 ± 4.25 to 103.45 ± 4.60%. The assay results correlated well with those obtained by high-performance liquid chromatography (r = 0.992). The assay described herein has great practical value in determination of small analytes because it is sensitive, rapid, and easy to perform in any laboratory. Although the assay was validated for tobramycin, however, it is also anticipated that the same methodology could be used for essentially any analyte for which a selective antibody exists, and an appropriate enzyme conjugate can be made.  相似文献   

5.
We report a highly sensitive immunoassay protocol based on the use of redox-modified multi-walled carbon nanotubes (MWNTs) as electrochemical labels. The MWNTs were coated with methylene blue (MB) at an optically-determined loading of 3.41 × 10(-3) mol g(-1), and were then attached to secondary antibodies (Ab(2)) by adsorption. As a model analyte mouse IgG was collected by primary antibody (Ab(1))-coated magnetic beads. Following binding of the MB-MWNT-Ab(2) conjugates, IgG could be measured by MB reduction. Using differential pulse voltammetry for quantification, IgG was calibrated with a dynamic range of 0.1 pg mL(-1) to 100 pg mL(-1). Given the different possible Ab(1)-MB-MWNT-Ab(2) orientations on the magnetic beads, it was likely that not all the MB communicated with the electrode. A greater quantity of MB could be accessed by using the Fe(CN)(6)(3-/4-) redox couple as a solution phase mediator. This enabled us to lower the dynamic range down to 5 fg mL(-1) to 100 fg mL(-1).  相似文献   

6.
To detect a biomarker for lung cancer, carcinoembryonic antigen (CEA), a highly sensitive, selective, rapid and portable immunosensor based on immunomagnetic separation and chemiluminescence immunoassay was introduced. A sandwich scheme assay has been utilized with horseradish peroxidase (HRP) labeled anti-CEA antibody and immunomagnetic beads (IMBs). The presence of target protein CEA caused the formation of the sandwich structures (IMBs-CEA-HRP labeled antibody). IMBs were applied to capture CEA and immobilize CEA through the external magnetic field. The HRP at the surface of the antibody catalytically oxidized the luminescence substrate to generate optical signals which were detected by a portable home-made luminometer and which were directly proportional to the concentration of CEA in the samples. The signals were dependent on CEA concentrations in a linear range from 0 to 50 ng mL−1. The limit of detection (LOD) of this method was as low as 5.0 pg mL−1 (S/N = 3). The novel immunosensor was highly sensitive with an assay time of <35 min. The intra- and inter-assay coefficients of variation were <10%. The anti-CEA antibody can be bound to the bead efficiently with a conjugation rate of 73%. IMBs could be stored in 4 °C protecting from light for 2 months without obvious reduction of biological activity. Human reference sera mixed with various concentrations of CEA were tested with the proposed method and commercial enzyme-linked immunosorbent assay (ELISA) kit, and a good linear relationship was obtained. This proposed technique demonstrated an excellent performance for quantifying CEA and was expected to be used for clinical testing.  相似文献   

7.
时间分辨荧光免疫分析法间接测定雌二醇   总被引:7,自引:0,他引:7  
以氯磺酰基噻吩甲酰三氟丙酮(CTTA)为铕(Eu)的螯合剂,羊抗鼠(SAM)的IgG为二抗,用SAM-IgG-CTTA-Eu作标记二抗,建立了以竞争抑制为基础的时间分辨荧光免疫分析测定离雌二醇(E2)的新方法。同均相方法相比灵敏度有很大提高,测定雌二醇(E2)的线性范围为2.5-200pg/mL,检测限为2.5pg/mL。这一方法可望用于E2的临床检测。  相似文献   

8.
A novel immunoassay format employing direct coating of small molecular hapten on microtiter plates is reported for the detection of atrazine and 2,4-dichlorophenoxyacetic (2,4-D). In this assay, the polystyrene surface of microtiter plates was first treated with an acid to generate -NO2 groups on the surface. Acid treated plates were further treated with 3-aminoprpyltriethoxysilane (APTES) to functionalize the plate surface with amino groups for covalent linkage to small molecular hapten with carboxyl groups. The modified plates showed significantly high antibody binding in comparison to plates coated with hapten-carrier protein conjugates and presented excellent stability as a function of the buffer pH and reaction time. The developed assay employing direct hapten coated plates and using affinity purified atrazine and 2,4-D antibodies demonstrated very high sensitivity, IC50 values for atrazine and 2,4-D equal to 0.8 ng mL−1 and 7 ng mL−1, respectively. The assay could detect atrazine and 2,4-D levels in standard water samples even at a very low concentration upto 0.02 and 0.7 ng mL−1 respectively in the optimum working range between 0.01 and 1000 ng mL−1 with good signal reproducibility (p values: 0.091 and 0.224 for atrazine and 2,4-D, respectively). The developed immunoassay format could be used as convenient quantitative tool for the sensitive screening of pesticides in samples.  相似文献   

9.
A novel immunoassay for the determination of tumor markers in human serum was established by combining a time-resolved fluoroimmunoassay (TRFIA) and immunomagnetic separation. Based on a sandwich-type immunoassay format, analytes in samples were captured by magnetic beads coated with one monoclonal antibody and “sandwiched” by another monoclonal antibody labeled with europium chelates. The immunocomplex was separated and washed by exposure to a magnetic field and treatment with enhancement solution; fluorescence was then measured according to the number of europium ions dissociated. Levels of the model analyte, carcinoembryonic antigen (CEA), were determined in a linear range (1–1000 ng mL−1) with a limit of detection of 0.5 ng mL−1 under optimal conditions. The reproducibility, recovery, and specificity of the immunoassay were demonstrated to be acceptable. To evaluate this novel assay for clinical applications, 239 serum samples were evaluated. Compared with the conventional TRFIA and chemiluminescence immunoassay (CLIA), the correlation coefficients of the developed immunoassay were 0.985 and 0.975, respectively. These results showed good correlation and confirmed that our method is feasible and could be used for the clinical determination of CEA (or other tumor antigens) in human serum.  相似文献   

10.
Sun Y  Song D  Bai Y  Wang L  Tian Y  Zhang H 《Analytica chimica acta》2008,624(2):294-300
The conjugates of magnetic beads coupled with an antibody can be trapped on the Au film firmly due to the magnetic force for the immunoassay of a surface plasmon resonance (SPR) biosensor. However, this approach exhibits significant limitations in robustness and sensitivity due to incomplete dissociation of magnetic beads from the Au film. The incorporation of a polyelectrolyte film on the Au surface can prevent the magnetic beads from the direct contact with the Au film. The layer-by-layer assembly of polyelectrolyte was used as spacer between the gold surface and the magnetic bead. Different layers of polyelectrolyte can be assembled onto the Au film based on an electrostatic force between polycations and polyanions. After the polyelectrolyte film was fabricated on the Au film, the deposition of the magnetic beads was maintained effectively on the film, which favors the sensitivity of the biosensor and the regeneration of the sensing membrane. When the polyelectrolyte layers of (PAH/PSS)3 were constructed on the Au film, the SPR biosensor with magnetic beads exhibited a satisfactory response to human IgG in the concentration range from 0.25 to 30.00 μg mL−1, and the determination limit obtained is eight times lower than that obtained with (PAH/PSS)1 layer.  相似文献   

11.
To detect a biomarker for small cell lung carcinoma, neuron specific enolase (NSE), a sensitive and specific chemiluminescence enzyme immunoassay was developed. Fluorescein isothiocyanate (FITC) labeled NSE capture antibody connected with NSE and alkaline phosphatase (ALP) labeled NSE detection antibody in a sandwich-type detection manner. This immune complex was further reacted with anti-FITC coated magnetic beads. In a magnetic field, the complex was enriched, and the sensitivity was thus enhanced. The limit of detection (LOD) of this method was <0.2 ng mL−1. The proposed immunoassay was highly selective, and not interfered by hook effect. The recovery was >83.0% and the coefficient of variation was <10.0%. Human sera from 120 patients were tested with the presented and traditional chemiluminescence enzyme immunoassay. An excellent linear relationship was obtained between two techniques. Overall, this immunoassay offers a promising alternative for NSE detection than traditional clinical examinations.  相似文献   

12.
本文发展了一种基于纳米金介导生物沉积铂并以铂催化氢还原伏安法进行检测的高灵敏电化学免疫分析新方法。该方法采用夹心免疫分析模式,实现了人免疫球蛋白(HIgG)的测定。首先在聚苯乙烯微孔板中固定羊抗HIgG捕获抗体,HIgG捕获后,碱性磷酸酶标记的HIgG抗体修饰的纳米金探针通过与HIgG的形成的夹心复合物而结合在微孔板上。结合的碱性磷酸酶催化抗坏血酸磷酸酯底物水解产生抗坏血酸,后者在纳米金上介导下还原铂离子沉积于纳米金表面。沉积的金属铂用王水溶解并电富集于玻碳电极上。通过测定铂催化氢还原产生的阴极电流,可实现HIgG的高灵敏分析。催化氢还原电流与HIgG浓度对数在0.1~100ng/ml之间呈线性相关性,检测限达22pg/ml。由于铂催化氢还原的高灵敏度及纳米金介导的生物沉积放大反应,该法具有较高的分析灵敏度,且免疫分析微孔板模式使得该法可同时用于大量样品的分析。  相似文献   

13.
Caifeng Ding  Hui Li  Jin-Ming Lin 《Talanta》2010,80(3):1385-1478
We describe herein the combination of electrochemical immunoassay using nanoporous gold (NPG) electrode with horseradish peroxidase (HRP) labeled secondary antibody-gold nanoparticles (AuNPs) bioconjugates for highly sensitive detection of protein in serum. The electroactive product of o-phenylenediamine (OPD) oxidized with H2O2 catalyzed by HRP was reduced in the Britton-Robinson (BR) buffer and the peak current of which was used to determine the concentration of antigen (Ag) in the analyte. The active surface area of NPG electrode was larger than that of a bare flat one. The presence of AuNPs enhanced the immobilized amount of HRP labeled antibody (Ab), which improved the sensitivity of the immunoassay when used as the secondary antibodies. As a result of these two combined effects, the sensitivity of the immunoassay for the determination of target protein was increased significantly. Using hepatitis B surface antigen (HBsAg) as a model, we demonstrate a dose response in the range of 0.01-1.0 ng/mL with a detection limit of 2.3 pg/mL. Analytical results of several human serum samples obtained using the developing technique are in satisfactory agreement with those given by enzyme-linked immune-absorbent assays (ELISA). In addition, the technique was about 100 times more sensitive in the detection of HBsAg than ELISA. All these demonstrated the feasibility of the present immunoassay method for clinical diagnosis.  相似文献   

14.
A novel and sensitive sandwich-type electrochemiluminescence (ECL) immunosensor was fabricated on a glassy carbon electrode (GCE) for ultra trace levels of α-fetoprotein (AFP) based on sandwich immunoreaction strategy by enrichment using magnetic capture probes and quantum dots coated with Au shell (CdS-Au) as the signal tag. The capture probe was prepared by immobilizing the primary antibody of AFP (Ab1) on the core/shell Fe3O4-Au nanoparticles, which was first employed to capture AFP antigens to form Fe3O4-Au/Ab1/AFP complex from the serum after incubation. The product can be separated from the background solution through the magnetic separation. Then the CdS-Au labeled secondary antibody (Ab2) as signal tag (CdS-Au/Ab2) was conjugated successfully with Fe3O4-Au/Ab1/AFP complex to form a sandwich-type immunocomplex (Fe3O4-Au/Ab1/AFP/Ab2/CdS-Au), which can be further separated by an external magnetic field and produce ECL signals at a fixed voltage. The signal was proportional to a certain concentration range of AFP for quantification. Thus, an easy-to-use immunosensor with magnetic probes and a quantum dots signal tag was obtained. The immunosensor performed at a level of high sensitivity and a broad concentration range for AFP between 0.0005 and 5.0 ng mL−1 with a detection limit of 0.2 pg mL−1. The use of magnetic probes was combined with pre-concentration and separation for trace levels of tumor markers in the serum. Due to the amplification of the signal tag, the immunosensor is highly sensitive, which can offer great promise for rapid, simple, selective and cost-effective detection of effective biomonitoring for clinical application.  相似文献   

15.
Zhang X  Liu F  Yan R  Xue P  Li Y  Chen L  Song C  Liu C  Jin B  Zhang Z  Yang K 《Talanta》2011,85(2):1070-1074
Staphylococcal enterotoxin B (SEB) is a potent gastrointestinal toxin and is heat resistant. SEB is also a potential bioterrorism agent. The ability to measure accurately very low amounts of staphylococcal enterotoxin B in food and other samples is very important. A highly sensitive and stable sandwich fluorescence immunoassay based on a pair of monoclonal antibodies against SEB which were produced by us was developed. Classical sandwich immunoassay was adopted and the glass slides were used as the base of the immunologic reaction. The functionalized fluorescent core-shell silica nanoparticles were used as labels. The fluorescence issued from the labels was detected by a laser-induced fluorescence millimeter sensor array detection platform. The fluorescence intensity has a linear relationship with the amount of SEB in the range of 50 pg/mL-5 ng/mL, and the detection limit of SEB was 20 pg/mL (the absolute detection limit was 0.02 pg). The relative standard deviation (RSD) for 5 parallel measurements of SEB (1 ng/mL) was 9.2%.  相似文献   

16.
A rapid and sensitive immunoassay based on a sequential injection analysis (SIA) using magnetic microbeads for the determination of alkylphenol polyethoxylates (APnEOs) is described. An SIA system was constructed from a syringe pump, a switching valve, a flow-through type immunoreaction cell equipped with a photon counting unit and a neodymium magnet. Magnetic beads, to which an anti-APnEOs monoclonal antibody was immobilized, were used as a solid support in an immunoassay. The introduction, trapping and release of the magnetic beads in and from the immunoreaction cell were controlled by means of a neodymium magnet and adjusting the flow of a carrier solution. The immunoassay was based on an indirect competitive immunoreaction of an anti-APnEOs monoclonal antibody immobilized on the magnetic beads with a sample APnEOs and a horseradish peroxidase (HRP)-labeled APnEOs in the same sample solution, and was based on the subsequent chemiluminscence reaction of HRP on the magnetic microbeads with a luminol solution containing hydrogen peroxide and p-iodophenol. The anti-APnEOs antibody was immobilized on the magnetic microbeads by coupling the antibody with the magnetic beads after activation of a carboxylate moiety on the surface of the magnetic beads that had been coated with a polylactic acid film. The antibody immobilized magnetic beads were introduced in the immunoreaction cell and trapped in it by the neodymium magnet, which was equipped beneath the immunoreaction cell. An APnEOs sample solution containing the HRP-labeled APnEOs at a constant concentration, and a luminol solution containing hydrogen peroxide and p-iodophenol were sequentially introduced into the immunoreaction cell, according to an SIA programmed sequence. Chemiluminescence emission was monitored by means of a photon counting unit located at the upper side of the immunoreaction cell by collecting the emitted light with a lens. A typical sigmoidal calibration curve was obtained, when the logarithm of the concentration of APnEOs was plotted against the chemiluminescence intensity as the number of photons in 100 ms using standard APnEOs sample solutions at various concentrations (0–1000 ppb) under optimum conditions. The lower detection limit defined as IC80 is ca 10 ppb. The time required for analysis is less than 15 min per a sample. The present method was successfully applied to the determination of APnEOs in river water.  相似文献   

17.
A rapid and sensitive immunoassay for the determination of vitellogenin (Vg) is described. The method involves a sequential injection analysis (SIA) system equipped with an amperometric detector and a neodymium magnet. Magnetic beads, onto which an antigen (Vg) was immobilized, were used as a solid support in an immunoassay. The introduction, trapping and release of magnetic beads in an immunoreaction cell were controlled by means of the neodymium magnet and by adjusting the flow of the carrier solution. The immunoassay was based on an indirect competitive immunoreaction of an alkaline phosphatase (ALP) labeled anti-Vg monoclonal antibody between the fraction of Vg immobilized on the magnetic beads and Vg in the sample solution. The immobilization of Vg on the beads involved coupling an amino group moiety of Vg with the magnetic beads after activation of a carboxylate moiety on the surface of magnetic beads that had been coated with a polylactate film. The Vg-immobilized magnetic beads were introduced and trapped in the immunoreaction cell equipped with the neodymium magnet; a Vg sample solution containing an ALP labeled anti-Vg antibody at a constant concentration and a p-aminophenyl phosphate (PAPP) solution were sequentially introduced into the immunoreaction cell. The product of the enzyme reaction of PAPP with ALP on the antibody, paminophenol, was transported to an amperometric detector, the applied voltage of which was set at +0.2 V vs. an Ag/AgCl reference electrode. A sigmoid calibration curve was obtained when the logarithm of the concentration of Vg was plotted against the peak current of the amperometric detector using various concentrations of standard Vg sample solutions (0-500 ppb). The time required for the analysis is less than 15 min.  相似文献   

18.
Soh N  Nishiyama H  Asano Y  Imato T  Masadome T  Kurokawa Y 《Talanta》2004,64(5):1160-1168
A rapid and sensitive immunoassay for the determination of carp vitellogenin (Vg) is described. The method involves a sequential injection analysis (SIA) system equipped with a chemiluminescence detector and a samarium-cobalt magnet. An anti-Vg monoclonal antibody, immobilized on magnetic beads, was used as a solid support for the immunoassay. The introduction, trapping and release of the magnetic beads in the flow cell were controlled by a samarium-cobalt magnet and the flow of the carrier solution. The immunoassay was based on a sandwich immunoreaction of anti-Vg monoclonal antibody (primary antibody) on the magnetic beads, Vg, and the anti-Vg antibody labeled with horseradish peroxidase (HRP) (secondary antibody), and was based on a subsequent chemiluminescence reaction of HRP with hydrogen peroxide and p-iodophenol, in a luminol solution. The magnetic beads to which the primary antibody was immobilized were prepared by coupling the primary antibody with the magnetic beads after an agarose-layer on the surface of the magnetic beads was epoxidized. The primary antibody-immobilized magnetic beads were introduced, and trapped in the flow cell equipped with the samarium-cobalt magnet, a Vg sample solution, an HRP-labeled secondary antibody solution and the luminol solution were sequentially introduced into the flow cell based on an SIA programmed sequence. Chemiluminescence emission was monitored by means of a photomultiplier located at the upper side of the flow cell. The optimal incubation times both for the first and second immunoreactions were determined to be 20 min. A concave calibration curve was obtained between Vg concentration and chemiluminescence intensity when various concentrations of standard Vg samples (2–100 ng mL−1) were applied to the SIA system under optimal conditions. In spite of a narrow working range, the lower detection limit of the immunoassay was about 2 ng mL−1.  相似文献   

19.
In the study, a kind of novel styrene-co-4-vinylpyridine (St-co-4-VP) porous magnetic polymer beads was prepared by microwave irradiation using suspension polymerization. Microwave heating preparation greatly reduced the polymerization time to 1 h. Physical characteristic tests suggested that these beads were cross-linking and possessed spherical shape, good magnetic response and porous morphologies with a narrow diameter distribution of 70–180 μm. Therefore, these beads displayed the long-term stability after undergoing 100-time extractions. Then, an analytical method for the determination of trace 24-epiBR in plant samples was developed by magnetic polymer bead extraction coupled with high performance liquid chromatography–fluorescence detection. St-co-4-VP magnetic polymer beads demonstrated the higher extraction selectivity for 24-epiBR than other reference compounds. Linear range was 10.00–100.0 μg/L with a relative standard deviation (RSD) of 6.7%, and the detection limit was 6.5 μg/kg. This analytical method was successfully applied to analyze the trace 24-epiBR in cole and breaking-wall rape pollen samples with recoveries of 77.2–90.0% and 72.3–83.4%, respectively, and RSDs were less than 4.1%. The amount of 24-epiBR in real breaking-wall rape pollen samples was found to be 26.2 μg/kg finally. This work proposed a sensitive, rapid, reliable and convenient analytical method for the determination of trace brassinosteroids in complicated plant samples by the use of St-co-4-VP magnetic polymer bead extraction coupled with chromatographic method.  相似文献   

20.
Chao Xie 《Talanta》2009,79(3):971-10020
In this paper, fluorescence correlation spectroscopy (FCS) is used for investigation of homogeneous immune reaction using synthetic peptide as antigen. The binding process of CA125 peptide antigen and its antibody was systematically investigated. The dissociation constant and dissociation rate for antigen-antibody complex were determined, which were kdiss = 0.94 ± 0.05 nM and koff = 0.00215 ± 0.0001 s−1, respectively. Under optimal conditions, the detection limit of the competitive immunoassay was 4 × 10−10 M (S/N = 3). The good recoveries were obtained with human serum samples. Our preliminary results demonstrated that the homogeneous competitive immunoassay based on FCS is simple, rapid, sensitive and small sample and reagent requirement, and this method maybe possess great potential applications in clinical diagnosis, food and environmental analyses and biological and biomedical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号