首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Raman spectroscopy was applied for the direct non-destructive analysis of amiodarone hydrochloride (ADH), the active ingredient of the liquid formulation Angoron®. The FT-Raman spectra were obtained through the un-broken as-received ampoules of Angoron®. Using the most intense vibration of the active pharmaceutical ingredient (API) at 1568 cm−1, a calibration model, based on solutions with known concentrations, was developed. The model was applied to the Raman spectra recorded from three as-purchased commercial formulations of Angoron® having nominal strength of 50 mg ml−1 ADH. The average value of the API in these samples was found to be 48.56 ± 0.64 mg ml−1 while the detection limit of the proposed technique was found to be 2.11 mg ml−1. The results were compared to those obtained from the application of HPLC using the methodology described in the European Pharmacopoeia and found to be in excellent agreement. The proposed analytical methodology was also validated by evaluating the linearity of the calibration line as well as its accuracy and precision. The main advantage of Raman spectroscopy over HPLC method during routine analysis is that it is considerably faster and no solvent consuming. Furthermore, Raman spectroscopy is non-destructive for the sample. However, the detection limit for Raman spectroscopy is much higher than the corresponding for the HPLC methodology.  相似文献   

2.
A green analytical method was developed for the analysis of sugar-based depilatories. Three independent partial least squares (PLS) regression models were built for the direct determination of glucose, fructose and maltose without any sample pretreatment based on their attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectra. The models showed adequate prediction capabilities with root-mean-square-errors of prediction ranging from 7.04 to 12.55 mg sugar g−1 sample. As a reference procedure, gradient liquid chromatography with on-line infrared detection, employing background correction based on cubic smoothing splines, was used. The analysis revealed changes in the sugar concentration due to the formulation process as compared to information on the ingredients provided by the manufacturers. Although fructose, glucose and sucrose were declared to be used for the production of depilatories, in the final products only fructose, glucose and maltose were determined. This fact was attributed to pH and temperature conditions employed during the production process as well as to the use of glucose syrup instead of crystalline glucose. The present ATR-FTIR-PLS method enables an accurate, cheap and fast determination without solvent consumption or toxic waste generation and offers therefore a green screening alternative to methods employing chromatographic techniques.  相似文献   

3.
Kishida K  Furusawa N 《Talanta》2005,67(1):54-58
A simultaneous determination of sulfamonomethoxine, sulfadimethoxine, and their hydroxy/N4-acetyl metabolites in chicken plasma, muscle, liver, and eggs using gradient high-performance liquid chromatography (HPLC) with a photo-diode array detector is developed. All the compounds are extracted by a handheld ultrasonic homogenizer with ethanol followed by centrifugation. The separation is performed by a reversed-phase C4 column with a gradient elution (ethanol:1% (v/v) acetic acid, v/v; 10:90 → 20:80). Average recoveries from samples spiked at 0.1-1.0 μg g−1 or μg ml−1 for each drug were >90% with relative standard deviations within 4%. The limits of quantitation were <30 ng g−1 or ng ml−1.  相似文献   

4.
In this work, for the first time, capillary zone electrophoresis (CZE) technique combined with microwave-assisted extraction (MAE) was developed for the fast quantification of chlorogenic acid (CA) in tobacco residues. CA in tobacco residue samples were extracted by MAE technique, and then analyzed by CZE. As a new sample preparation method for tobacco residues, the MAE procedure is optimized, validated and compared with conventional methods including ultrasonic extraction (USE) and reflux extraction (RE). It is found that MAE gives the best result due to the highest extraction efficiency within shortest extraction time (only 4.0 min). Here, CA is determined by CZE based on the calibration curve of its authentic standard. The method linearity, detection limit, precision and recovery are studied. The results show that the combined MAE and CZE method has a linearity (R2 0.991, 0.003-0.5 mg ml−1), a limit of detection (0.003 mg ml−1), a limit of quantification (0.01 mg ml−1), good precision (R.S.D. = 4.28%) and a finer recovery (89.0%). The proposed method was successfully applied to the analysis of CA in tobacco residue samples. The experiment results have demonstrated that the CZE combined with MAE is a convenient, fast, economical and reliable method for the determination of CA in tobacco residues.  相似文献   

5.
A new sequential injection (SI) system with spectrophotometric detections has been developed for successive determination of protein and glucose. The protein assay is based on ion-association of protein with tetrabromophenolphthalein ethyl ester (TBPE) in the presence of Triton X-100 at pH 3.2. The blue product is monitored for absorbance at 607 nm. For glucose, hydrogen peroxide, generated by the oxidation of glucose in the presence of glucose oxidase immobilized on glass beads packed in a minicolumn, is monitored using iron-catalyzed oxidation reaction of p-anisidine to form a red colored product (520 nm). The SI procedure takes advantage in performing the protein assay during the incubation period for glucose oxidation. Linear ranges were up to 10 mg dL−1 human serum albumin (HSA) with a limit of detection (LOD) (3σ) of 0.3 mg dL−1, and up to 12.5 mg dL−1 glucose with LOD of 0.08 mg dL−1. R.S.D.s (n = 11) were 2.7% and 2.5% (for 1 mg dL−1 and 5 mg dL−1 HSA) and 1.4% (9 mg dL−1 glucose). Sample throughput for the whole assay of both protein and glucose is 6 h−1. The automated system has been demonstrated for the successive assay of protein and glucose in urine samples taken from diabetic disease patients, with good agreement with the other methods. This developed SI system is an alternative automation for screening for diabetic diagnosis.  相似文献   

6.
A simple and rapid analytical method was developed for the determination of phthalates, usually employed in nail cosmetic products. The method is based on an ultrasonic extraction of the sample with ethanol-water (90:10, v/v) followed by HPLC separation and quantitation. HPLC was carried out using a C18 column and spectrophotometric detection at 254 nm. A linear gradient elution was performed with ethanol-water starting from 50 to 95% ethanol in 30 min. Standard calibration curves were linear for all the analytes over the concentration range 5-200 μg ml−1 with LOD values of about 0.5 μg ml−1.The proposed green analytical method has been successfully applied for the analysis of commercial samples in order to check the presence of phthalates and to determine their concentration.  相似文献   

7.
A novel simple, fast and efficient ultra-high performance supercritical fluid chromatography (UHPSFC) method was developed and validated for the separation and quantitative determination of eleven illegal dyes in chili-containing spices. The method involved a simple ultrasound-assisted liquid extraction of illegal compounds with tetrahydrofuran. The separation was performed using a supercritical fluid chromatography system and CSH Fluoro-Phenyl stationary phase at 70 °C. The mobile phase was carbon dioxide and the mixture of methanol:acetonitrile (1:1, v/v) with 2.5% formic acid as an additive at the flow rate 2.0 mL min−1. The UV–vis detection was accomplished at 500 nm for seven compounds and at 420 nm for Sudan Orange G, Butter Yellow, Fast Garnet GBC and Methyl Red due to their maximum of absorbance. All eleven compounds were separated in less than 5 min. The method was successfully validated and applied using three commercial samples of chili-containing spices – Chili sauce (Indonesia), Feferony sauce (Slovakia) and Mojo sauce (Spain). The linearity range of proposed method was 0.50–9.09 mg kg−1 (r ≥ 0.995). The detection limits were determined as signal to noise ratio of 3 and were ranged from 0.15 mg kg−1 to 0.60 mg kg−1 (1.80 mg kg−1 for Fast Garnet) for standard solution and from 0.25 mg kg−1 to 1.00 mg kg−1 (2.50 mg kg−1 for Fast Garnet, 1.50 mg kg−1 for Sudan Red 7B) for chili-containing samples. The recovery values were in the range of 73.5–107.2% and relative standard deviation ranging from 0.1% to 8.2% for within-day precision and from 0.5% to 8.8% for between-day precision. The method showed potential for being used to monitor forbidden dyes in food constituents. The developed UHPSFC method was compared to the UHPLC-UV method. The orthogonality of Sudan dyes separation by these two methods was demonstrated. Benefits and drawbacks were discussed showing the reliability of both methods for monitoring of studied illegal dyes in real food constituents.  相似文献   

8.
A simple and rapid spectrophotometric method is proposed for the determination of transparent exopolymer particles (TEP) in freshwater samples. In this method, TEP reacts with excess of alcian blue solution yielding a low solubility dye-TEP complex. After centrifugation, the concentration of the remaining dye in the supernatant was determined at 602 nm and its concentration was related to the concentration of TEP in freshwater. The effect of alcian blue concentration from 1.5×10−3 to 9.0×10−3% (m/v), solution pH from 2.5 to 6.9 and stirring time from 20 to 120 s on the analytical curve was investigated. Under the optimum conditions established, such as alcian blue concentration of 3.0×10−3% (m/v); pH of 4.0 (0.2 mol l−1 acetate buffer solution) and stirring time of 1 min, the analytical curve was linear from 0.50 to 10 μg ml−1 (A=0.34−0.037[GX]; r2=0.9999; where A is the absorbance and [GX] the gum xanthan concentration in μg ml−1) with a detection limit of 0.10 μg ml−1. The recovery of TEP (as gum xanthan) for two samples ranged from 95.3 to 108 and the relative standard deviations (R.S.D.s) were lower than 0.8% for gum xanthan solutions at concentrations of 1.0 and 1.5 μg ml−1 (n=8). The results obtained for TEP in freshwater samples using the proposed spectrophotometric method and those obtained using a literature method are in agreement at the 95% confidence level and within an acceptable range of error.  相似文献   

9.
A spectrophotometric method was developed to quantify low polysorbate (PS) levels in biopharmaceutical formulations containing high protein concentrations. In the method, Oasis HLB solid phase extraction (SPE) cartridge was used to extract PS from high protein concentration formulations. After loading a sample, the cartridge was washed with 4 M guanidine HCl and 10% (v/v) methanol, and the retained PS was eluted by acetonitrile. Following the evaporation of acetonitrile, aqueous cobalt-thiocyanate reagent was added to react with the polyoxyethylene oxide chain of polysorbates to form a blue colored PS–cobaltothiocyante complex. This colored complex was then extracted into methylene chloride and measured spectrophotometrically at 620 nm. The method performance was evaluated on three products containing 30–40 mg L−1 PS-20 and PS-80 in ≤70 g L−1 protein formulations. The method was specific (no matrix interference identified in three types of protein formulations), sensitive (quantitation limit of 10 mg L−1 PS) and robust with good precision (relative standard deviation ≤6.4%) and accuracy (spike recoveries from 95% to 101%). The linear range of the method for both PS-20 and PS-80 was 10 to 80 mg L−1 PS. By diluting samples with 6 M guanidine HCl and/or using different methylene chloride volumes to extract the colored complexes of standards and samples, the method could accurately and precisely quantify 40 mg L−1 PS in up to 300 g L−1 protein formulations.  相似文献   

10.
A rapid and precise continuous-flow method is described for the determination of propranolol based on the chemiluminescence (CL) produced by its reaction with potassium permanganate in a sulphuric acid medium. The optimum chemical conditions for the chemiluminescence emission were investigated. Two manifolds were tested and their characteristics such as the length of the reactor, injection volume and flow rate were compared. When using the selected manifold, propranolol gives a linear calibration graph over the concentration range 1.0-17.5 mg l−1. The detection limit calculated as proposed by IUPAC was 70 ng ml−1 and the detection limit calculated as proposed by Clayton was 0.87 mg l−1. For analysis of 10 solutions of 10.0 mg l−1 propranolol, if error propagation theory is assumed, the relative error was 0.1%. The standard deviation (S.D.) for 10 replicate samples was 0.07 mg l−1. The method has been validated versus a published fluorimetric method.The present chemiluminescence procedure was applied to the determination of propranolol in simple British and Spanish pharmaceutical formulations, with excellent recoveries, as the determination is free from interference from common excipients. However, some drugs, such as hydralazine and bendroflumethizide which may also be present in the formulation, increase the emission intensity.  相似文献   

11.
A preconcentration method based on the adsorption of palladium-dimethylglyoxime (DMG) complex on silica gel for the determination of palladium at trace levels by atomic absorption spectrometry (AAS) has been developed. The retained palladium as Pd(DMG)2 complex was eluted with 1 mol l−1 HCl in acetone. The effect of some analytical parameters such as pH, amount of reagent and the sample volume on the recovery of palladium was examined in synthetic solutions containing street dust matrix. The influence of some matrix ions on the recovery of palladium was investigated by using the developed method when the elements were present both individually and together. The results showed that 2500 μg ml−1 Na+, K+, Mg2+, Al3+ and Fe3+; 5000 μg ml−1 Ca2+ ; 500 μg ml−1 Pb2+; 125 μg ml−1 Zn2+; 50 μg ml−1 Cu2+ and 25 μg ml−1 Ni2+ did not interfere with the palladium signal. At the optimum conditions determined experimentally, the recovery for palladium was found to be 95.3±1.2% at the 95% confidence level. The relative standard deviation and limit of detection (3s/b) of the method were found to be 1.7% and 1.2 μg l−1, respectively. In order to determine the adsorption behaviour of silica gel, the adsorption isotherm of palladium was studied and the binding equilibrium constant and adsorption capacity were calculated to be 0.38 l mg−1 and 4.06 mg g−1, respectively. The determination of palladium in various samples was performed by using both flame AAS and graphite furnace AAS. The proposed method was successfully applied for the determination of palladium in the street dust, anode slime, rock and catalytic converter samples.  相似文献   

12.
Wu X  Chen X  Hu Z 《Talanta》2003,59(1):115-121
A high-performance liquid chromatographic (HPLC) method is described for the simultaneous determination of honokiol and magnolol in rat plasma. The plasma was deproteinized with acetonitrile which contained an internal standard (diphenyl) and was separated from the aqueous layer by adding sodium chloride. Honokiol and magnolol are extracted into the acetonitrile layer with high yield, and determined by reversed-phase HPLC and ultraviolet detection. The limits of quantitation for honokiol and magnolol were 13 and 25 ng ml−1 in plasma, respectively, and recovery of both analytes was greater than 93%. The assay was linear from 20 to 200 ng ml−1 for honokiol and from 40 to 400 ng ml−1 for magnolol. Variation over the range of the standard curve was less than 15%. The method was used to determine the concentration-time profiles of honokiol and magnolol in the plasma following rectal administration of Houpo extract at a dose of 245 mg kg−1, equivalent to 13.5, 24.4 mg kg−1 of honokiol and magnolol, respectively.  相似文献   

13.
Feng Gao  Fabao Luo  Wu Yao  Jun Yin  Lun Wang 《Talanta》2009,80(1):202-493
Amino-functionalized luminescent silica nanoparticles (LSNPs) doped with the europium(III) mixed complex, Eu(TTA)3phen with 2-thenoyltrifluoroacetone (TTA) and 1,10-phenanthroline(phen) were synthesized successfully using an revised Stöber method. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR), and fluorescence spectroscopy were performed for characterizing the synthesized nanoparticles. In the presence of glucose, the fluorescence intensity of the amino-functionalized LSNPs was enhanced due to the enhanced fluorescence resonance energy transfer. Based on fluorescence-enhancing effect, a simple and sensitive method for the determination of glucose was proposed. Under the optimized experimental conditions, the enhanced fluorescence intensity ratio (ΔF/F0) was linear with the concentration of glucose (c) in the range of 0.0-180 μg ml−1 with a detection limit of 0.8 μg ml−1 (S/N = 3). The R.S.D. values were 0.33% and 0.37% at the levels of 22.5 and 100 μg ml−1, respectively. The proposed method was applied to the determination of glucose in synthetic samples with satisfactory results. The proposed method was also performed to the analysis of blood glucose in human serum samples and the results were in good agreement with clinical data provided by the hospital, which indicates that the method presented here is not only simple, sensitive, but also reliable and suitable for practical applications.  相似文献   

14.
A new, accurate, sensitive and fast reversed-phase high-performance liquid chromatography (RP-HPLC) as an analytical method for the quantitative determination of 11 drugs in human urine was worked out, optimized and validated. The objects of analysis were imipenem (IMP), paracetamol (PAR), dipyrone (DPR), vancomycin (VCM), amikacin (AMK), fluconazole (FZ), cefazolin (CFZ), prednisolone (PRE), dexamethasone (DEX), furosemide (FUR) and ketoprofen (KET) belonging to four different groups (antibiotics, analgesic, demulcent and diuretic). For HPLC analysis, diode array (DAD) and fluorescence (FL) detectors were used. The separation of analyzed compounds was conducted by means of a LiChroCART® Purospher® C18e (125 mm × 3 mm, particle size 5 μm) analytical column with LiChroCART® LiChrospher® C18 (4 mm × 4 mm, particle size 5 μm) pre-column with gradient elution. Analyzed drugs were determined within 20 min. The mobile phase was comprised of various proportions of methanol, acetonitrile and 0.05% trifluoroacetic acid in water. AMK was separated and determined from human urine using ortho-phthaldialdehyde-3-mercaptopropionic acid (OPA-3-MPA) as a fluorescent reagent by RP-HPLC-FL. The following retention times for drugs IMP, PAR, DPR, VCM, AMK, FZ, CFZ, PRE, DEX, FUR and KET in human urine were found: 4.01 min, 4.86 min, 6.71 min, 8.14 min, 9.46 min, 10.01 min, 10.90 min, 13.34 min, 14.06 min, 16.03 min and 18.98 min, respectively. Excellent linearity was obtained for compounds in the range of concentration: 0.35-42 μg ml−1, 0.5-45 μg ml−1, 4.5-38 μg ml−1, 0.25-25 μg ml−1, 0.5-35 μg ml−1, 0.25-22 μg ml−1, 0.03-52 μg ml−1, 0.15-25 μg ml−1, 0.25-28 μg ml−1, 0.05-18 μg ml−1 and 0.15-35 μg ml−1 for IMP, PAR, DPR, VCM, AMK, FZ, CFZ, PRE, DEX, FUR and KET, respectively. The limits of detection (LOD) and limits of quantification (LOQ) for analyzed drugs were calculated in all cases and recovery studies were also performed. Ten human urine samples obtained from patients treated in hospital have been tested. In analyzed samples, one or more drugs from the 11 examined drugs were detected. The concentrations of examined drugs in urine samples ranged between: 1.5-12 μg ml−1 of PAR, 5.2-11.5 μg ml−1 of DPR, 0.13-9.5 μg ml−1 of CFZ and 0.1-8 μg ml−1 of FUR. This method can be successfully applied to routine determination of all these drugs in human urine samples.  相似文献   

15.
A novel chemiluminescence gas-diffusion flow injection system for the determination of arsenic(III) in aqueous samples is described. The analytical procedure involves injection of arsenic(III) samples and standards into a 0.3 mol L−1 hydrochloric acid carrier stream which is merged with a reagent stream containing 0.2% (w/v) sodium borohydride and 0.015 mol L−1 sodium hydroxide. Arsine, generated in the combined carrier/reagent donor stream, diffuses across the hydrophobic Teflon membrane of the gas-diffusion cell into an argon acceptor stream and then reacts with ozone in the flow-through chemiluminescence measuring cell of the flow system. Under optimal conditions, the method is characterized by a wide linear calibration range from 0.6 μg L−1 to 25 mg L−1, a detection limit of 0.6 μg L−1 and a sample throughput of 300 samples per hour at 25 mg L−1 and 450 samples per hour at 25 μg L−1.  相似文献   

16.
Al-Arfaj NA 《Talanta》2004,62(2):255-263
A flow-injection (FI) methodology using (2,2′-dipyridyl) ruthenium(II) [Ru(dipy)32+] chemiluminescence (CL) was developed for the rapid and sensitive determination of metoclopramide hydrochloride. The method is based on the CL reaction of metoclopramide with Ru(dipy)32+ and KMnO4 in a sulfuric acid medium. Under the optimum conditions, a calibration graph was obtained over the concentration range 0.005-3.5 μg ml−1 with a limit of detection (S/N=2) of 1 ng ml−1. The correlation coefficient was 0.99993 (n=8) with a relative standard deviation of 0.48% for 10 determinations of 1 μg ml−1 of drug. The method was successfully applied to the determination of metoclopramide in pharmaceutical preparations and biological fluids after IP administration of 25 mg kg−1 dose to rats. The elimination half-life was 2.5±0.4 h.  相似文献   

17.
A fast method using high-performance liquid chromatography based on two monolithic columns has been developed for the simultaneous determination of isoflavones extracted from soybeans and derived foods. The 12 main isoflavones were resolved in 10 min in two coupled monolithic columns working at 35 °C using a elution gradient of acidified water (0.1% acetic acid) and methanol (0.1% acetic acid) at a flow rate of 5 mL min−1. Retention time and relative area standard deviations were below 1% for all isoflavones. The method developed was successfully applied to several soy food samples and spiked samples. Total isoflavone concentration in sampled soy foods ranged from 34.28 mg L−1 to 4.29 mg g−1.  相似文献   

18.
An on-line system with vapour generation (VG) and Fourier transform infrared (FTIR) spectrometric detection has been developed for the determination of free ammonium and organic nitrogen in agrochemical formulations containing hydrolyzed proteins. Commercial samples were digested, in batch mode, with sulphuric acid and the obtained solution was alkalinized on-line to transform the NH4+ to NH3 that was continuously monitored by FTIR. Free ammonium was determined in the same system after simple dilution of undigested samples with water. Different gas phase separators were assayed in order to introduce gaseous NH3 into a home made IR gas cell of 10 cm pathlength, where the corresponding FTIR spectra were acquired by accumulating 10 scans per spectrum. The 967.0 cm−1 band was used for the quantification of ammonia. The figures of merit of the proposed method involve a linear range up to 100 mg L−1, a limit of detection (3σ) of 1.4 mg L−1 of N, a limit of quantification (10σ) of 4.8 mg L−1 of N, a precision (R.S.D.) of 3.0% for 10 replicate determinations of a 10.0 mg L−1 of N and a sample measurement frequency of 60 h−1. The method was successfully applied to the determination of free ammonium and total N in commercial amino acid formulations and results compare well with those obtained by the Kjeldhal method.  相似文献   

19.
A sensitive procedure has been developed for selenium and tellurium determination in milk by hydride generation atomic fluorescence spectrometry (HG-AFS) after microwave-assisted sample digestion. The method provides sensitivity values of 1591 and 997 fluorescence units ng−1 ml−1 with detection limits of 0.005 and 0.015 ng ml−1 for Se and Te, respectively. The application of the developed methodology to the analysis of cow milk samples of the Spanish market evidenced the presence of concentration ranges from 11.1 to 26.0 ng ml−1 for Se, and from 1.04 to 9.7 ng ml−1 for Te having found a good comparability with data obtained after dry-ashing of samples.  相似文献   

20.
A differential spectrophotometric method has been developed for the simultaneous quantitative determination of glucose (GLU), fructose (FRU) and lactose (LAC) in food samples. It relies on the different kinetic rates of the analytes in their oxidative reaction with potassium ferricyanide (K3Fe(CN)6) as the oxidant. The reaction data were recorded at the analytical wavelength (420 nm) of the K3Fe(CN)6 spectrum. Since the kinetic runs of glucose, fructose and lactose overlap seriously, the condition number was calculated for the data matrix to assist with the optimisation of the experimental conditions. Values of 80 °C and 1.5 mol l−1 were selected for the temperature and concentration of sodium hydroxide (NaOH), respectively. Linear calibration graphs were obtained in the concentration range of 2.96-66.7, 3.21-67.1 and 4.66-101 mg l−1 for glucose, fructose and lactose, respectively. Synthetic mixtures of the three reducing sugar were analysed, and the data obtained were processed by chemometrics methods, such as partial least square (PLS), principal component regression (PCR), classical least square (CLS), back propagation-artificial neural network (BP-ANN) and radial basis function-artificial neural network (RBF-ANN), using the normal and the first-derivative kinetic data. The results show that calibrations based on first-derivative data have advantages for the prediction of the analytes and the RBF-ANN gives the lowest prediction errors of the five chemometrics methods. Following the validation of the proposed method, it was applied for the determination of the three reducing sugars in several commercial food samples; and the standard addition method yielded satisfactory recoveries in all instances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号