首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The preparation of (+)- and (−)-12 by resolution of (±)-12 with (R)-N-phenylpantolactam, (R)-13, is described. From (+)- and (−)-12 a series of chiral bisnoradamantane derivatives, whose chirality stems from substitution at the bridgehead positions, have been obtained in both enantiomeric forms.  相似文献   

2.
We have described the synthesis of highly functionalized chiral cyclopentanoids, which are important building units for synthesis of biological active compounds. The (−)- or (+)-7,7-dimethoxy-1,4,5,6-tetrachlorobicyclo[2.2.1]hept-5-en-2-endo-yl acetate, obtained from the enzyme catalyzed transesterification of the racemate, was converted to α-diketone chiral. The α-diketone was treated with H2O2/NaOH and esterified with CH2N2 to furnish a mixture of the compounds (+)- or (−)-10 and (+)- or (−)-11. The reduction of the (+)- or (−)-10 and/or (+)- or (−)-11 with BH3·THF furnished the lactone (+)- or (−)-13 with excellent yield. The α-diketone was reduced with indium metal in the presence of NH4Cl furnishing the acyloin (+)-14 in 67% of yield. The treatment of acyloin (+)-14 with Pb(OAc)4 furnished the aldehyde (+)-15 with 80% of yield. The reduction of the aldehyde (+)-15 with NaBH4 has again produced the lactone (+)-13.  相似文献   

3.
We have developed an efficient and a general approach to chiral 2-substituted N-tosylpiperidines starting from chiral α-substituted-N-tosylaziridines. Using this approach, we have synthesized (+)-coniine. The synthesis of chiral N-tosyl-2-piperidinylethanol 15 and ent-15, was achieved from l- and d-aspartic acids, respectively in few steps. Piperidine 15 was converted into 2-(2-hydroxysubstituted)piperidines of type 2 in optically active form. By applying this strategy, asymmetric syntheses of halosaline (R,R)-2a, (+)- and (−)-sedamine 2b, (+)- and (−)-allosedamine 2c, (+)- and (−)-sedridine 2d, (+)- and (−)-allosedridine 2e, (+)-tetraponerine T-3 3a, T-4 3c, T-7 3b, and T-8 3d have been achieved in high yields. These stereoisomers can be interconverted via Mitsunobu inversion in excellent yields.  相似文献   

4.
Machiko Ono  Yuki Shida 《Tetrahedron》2007,63(41):10140-10148
(±)-(4,5-anti)-4-Benzyloxy-5-hydroxy-(2E)-hexenoic acid 6 was subjected to δ-lactonization in the presence of 2,4,6-trichlorobenzoyl chloride and pyridine to give the α,β-unsaturated-δ-lactone congener (±)-7 (87% yield) accompanied by trans-cis isomerization. This δ-lactonization procedure was applied to the chiral synthesis of (+)-(4S,5R)-7 or (−)-(4R,5S)-7 from the chiral starting material (+)-(4S,5R)-6 or (−)-(4R,5S)-6. Deprotection of the benzyl group in (+)-(4S,5R)-7 or (−)-(4R,5S)-7 by the AlCl3/m-xylene system gave the natural osmundalactone (+)-(4S,5R)-5 or (−)-(4R,5S)-5 in good yield, respectively. Condensation of (−)-(4R,5S)-5 and tetraacetyl-β-d-glucosyltrichloroimidate 22 in the presence of BF3·Et2O afforded the condensation product (−)-8 (97% yield), which was identical to tetra-O-acetylosmundalin (−)-8 derived from natural osmundalin 9.  相似文献   

5.
A new exploration of monoprotected derivatives of trans-1,2-diaminocyclohexane as a platform for the synthesis of enantiomerically pure imidazole derivatives is described. The primary amino group (-NH2), present in the mono-imine derivative of salicylic aldehyde (hemi-salen derivative) 5 was used for sequential reactions with formaldehyde and the corresponding α-(hydroxyimino)ketone. (S)-(−)-1-Phenylethylamine was also used as starting material for the preparation of new imidazole N-oxides 7c and 10a-c, bearing a chiral N-(1-phenylethyl)carboxamido function at C(4). Imidazole N-oxides 10a,b possessing either a Me or i-Pr group at N(1), respectively, follow the known sulfur-transfer pathway to afford the corresponding imidazole-2-thiones 13a,b. However, in the case of imidazole N-oxide 10c with a bulky adamantan-1-yl substituent at N(1), the attempted ‘sulfur-transfer reaction’ led to the deoxygenated imidazole derivative 14. Finally, the same reaction with 7c, which bears an electron-withdrawing N-(1-phenylethyl)carboxamide residue at C(4) of the imidazole ring, yielded a mixture of deoxygenated imidazole 16 and imidazole-2-thione 15c.  相似文献   

6.
The neutral complexes [Rh(I)(NBD)((1S)-10-camphorsulfonate)] (2) and [Rh(I)((R)-N-acetylphenylalanate)] (4) reacted with bis-(diphenylphosphino)ethane (dppe) to form the cationic Rh(I)(NBD)(dppe) complexes, 5 and 6, respectively, accompanied by their corresponding chiral counteranions. Analogously, 4 reacted with 4,4-dimethylbipyridine to yield complex 7. Complexes 5 and 6 disproportionated in aprotic solvents to form the corresponding bis-diphosphine complexes 8 and 9, respectively. 8 was characterized by an X-ray crystal structure analysis. In order to form achiral Rh(I) complexes bearing chiral countercations new sulfonated monophosphines 13-16 with chiral ammonium cations were synthesized. Tris-triphenylphosphinosulfonic acid (H3TPPS, 11) was used to protonate chiral amines to yield chiral ammonium phosphines 14-16. Thallium-tris-triphenylphosphinosulfonate (Tl3TPPS, 12) underwent metathesis with a chiral quartenary ammonium iodide to yield the proton free chiral ammonium phosphine 13. Phosphines 15 and 16 reacted with [Rh(NBD)2]BF4 to afford the highly charged chiral zwitterionic complexes [Rh(NBD)(TPPS)2][(R)-N,N-dimethyl-1-(naphtyl)ethylammonium]5 (17) and [Rh(NBD)(TPPS)2][BF4][(R)-N,N-dimethyl-phenethylammonium]6 (18), respectively. Complexes 5, 6, and 18 were tested as precatalysts for the hydrogenation of de-hydro-N-acetylphenylalanine (19) and methyl-(Z)-(α)-acetoamidocinnamate (MAC, 20) under homogeneous and heterogeneous (silica-supported and self-supported) conditions. None of the reactions was enantioselective.  相似文献   

7.
The novel optically active derivatives of 2,2′-disubstituted-1-aminocyclopropane-1-carboxylic acid (−)-2 and (+)-3 were synthesised from the spiro-azlactone (+)-1. Oxidation of the diol moiety of (+)-3 gave by ring enlargement the racemic mixture of 2,3-dihydrofuran derivative (±)-6. This conversion is explained by stepwise rearrangement of the initially formed tetrasubstituted cyclopropanecarbaldehyde 4 through zwitterionic's reactive intermediate 5. The formation of (±)-6 is preferred energetically as established by ab initio calculations of the ground states and possible intermediates for that rearrangement. The crystal structure and absolute configuration of the compounds (+)-1, (−)-2, (+)-3 and (−)-7 were determined by single-crystal X-ray diffraction method. All four compounds possess Z-configuration of the cyclopropane ring. The dioxolane ring in the structures (+)-1 and (−)-2 adopts half-chair conformation, while the cyclopropane ring and geminally substituted groups in the structures (−)-2, (+)-3 and (−)-7 possess the anticlinal conformation. The molecules of the compound (+)-1 are connected by very weak intermolecular hydrogen bond of C-H?O type. In the compounds (−)-2, (+)-3 and (−)-7inter- and intramolecular hydrogen bonds of N-H?O type were observed. The spiro-compound (+)-1 exhibited a more pronounced inhibitory activity against the proliferation of murine leukemia and human T-lymphocytes cells than other type of tumor cell lines and normal human fibroblast cells.  相似文献   

8.
Achiral 1-benzoyl-3-methylperhydropyrimidin-4-one (1) was deemed a useful, potential precursor for the enantioselective synthesis of α-substituted β-amino acids. Pyrimidinone 1 was prepared from inexpensive β-aminopropanoic acid in 62% overall yield. Prochiral enolate derivative 1 -Li was alkylated in good yield and moderate enantioselectivity in the presence of chiral amines (S)-8, (S,S)-9, (S,S)-10, or (−)-sparteine. The enantioselectivity of the alkylation process is highest in toluene as the solvent and in the presence of lithium bromide as additive. The racemic alkylated derivatives 2 and 3 were readily metallated with LDA to give prochiral enolates 2-Li and 3-Li, that were reprotonated with novel chiral phenolic acids (S)-11, (S,S)-12, (S)-13, and (S,S)-14 in moderate enantioselectivity in the case of 2-Li and good enantioselectivity in the case of 3-Li. The acid (6N HCl) hydrolysis of enantioenriched 2 and 3 proceeded in good yield and without racemization to afford α-alkyl-β-amino acids 4 and 5, respectively.  相似文献   

9.
The synthetic utility of the intramolecular acylation of α-sulfinyl carbanions as an efficient and general synthetic approach for the preparation of (−)-pentenomycin I (1) and (−)-epipentenomycin I (5) and their enantiomers (ent-1 and ent-5), starting from chiral (2S,5S,6S)-ester 6 and ent-6, respectively, has been demonstrated. Easy accesses to pentenomycin analogs have also been demonstrated through the Pummerer, Suzuki-Miyaura, and Sonogashira reactions.  相似文献   

10.
Racemic 1-(1′-isoquinolinyl)-2-naphthalenemethanol rac-12 was prepared through a ligand coupling reaction of racemic 1-(tert-butylsulfinyl)isoquinoline rac-7 with the 1-naphthyl Grignard reagent 10. Resolution of rac-12 was achieved through chromatographic separation of the Noe-lactol derivatives 14 and 15, providing (R)-(−)-12 of >99% ee and (S)-(+)-12 of 90% ee. The ligand coupling reaction of optically enriched sulfoxide (S)-(−)-7 (62% ee) with Grignard reagent 10 furnished rac-12, with the absence of stereoinduction resulting from competing rapid racemisation of the sulfoxide 7. Reaction of optically enriched (S)-(−)-7 with 2-methoxy-1-naphthylmagnesium bromide was also accompanied by racemisation of the sulfoxide 7, and furnished optically active (+)-1-(2′-methoxy-1′-naphthyl)isoquinoline (+)-3b in low enantiomeric purity (14% ee). The absolute configuration of (+)-3b was assigned as R using circular dichroism spectroscopy, correcting an earlier assignment based on the Bijvoet method, but in the absence of heavy atoms. Optically active 2-pyridyl sulfoxides were found not to undergo racemisation analogous to the 1-isoquinolinyl sulfoxide 7, with the ligand coupling reactions of (R)-(+)- and (S)-(−)-2-[(4′-methylphenyl)sulfinyl]-3-methylpyridines, (R)-(+)-17 and (S)-(−)-17, with 2-methoxy-1-naphthylmagnesium bromide providing (−)- and (+)-2-(2′-methoxy-1′-naphthyl)-3-methylpyridines, (−)-18 and (+)-18, in 53 and 60% ee, respectively. The free energy barriers to internal rotation in 3b and 18 have been determined, and the isoquinoline (R)-(−)-12 examined as a ligand in the enantioselectively catalysed addition of diethylzinc to benzaldehyde; (R)-(−)-12 was also converted to (R)-(−)-N,N-dimethyl-1-(1′-isoquinolinyl)-2-naphthalenemethanamine (R)-(−)-19, and this examined as a ligand in the enantioselective Pd-catalysed allylic substitution of 1,3-diphenylprop-2-enyl acetate with dimethyl malonate.  相似文献   

11.
Epimeric 3-carboxycyclopentylglycines (+)-10/(−)-10 and (+)-11/(−)-11 were efficiently prepared by the way of a sequence of Diels-Alder and retro-Claisen reactions. The synthesis incorporates a concise and inexpensive chemoenzymatic resolution of racemic compounds 4,5a, the N,O-protected derivatives of amino acids 10,11. Systematic screening with different enzymes and microorganisms was performed to select a very efficient catalyst for the separation of the racemic mixtures. The reaction conditions allowing deprotection of both ester and amino functions and to avoiding epimerization processes were studied. Enantiomers (i.e., (+)-10/(−)-10 and (+)-11/(−)-11) were obtained in high enantiopurity. The absolute configuration of all stereocenters was unequivocally assigned.  相似文献   

12.
Novel condensation reaction of tropone with N-substituted and N,N′-disubstitued barbituric acids in Ac2O afforded 5-(cyclohepta-2′,4′,6′-trienylidene)pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (8a-f) in moderate to good yields. The 13C NMR spectral study of 8a-f revealed that the contribution of zwitterionic resonance structures is less important as compared with that of 8,8-dicyanoheptafulvene. The rotational barriers (ΔG) around the exocyclic double bond of mono-substituted derivatives 8a-c were obtained to be 14.51-15.03 kcal mol−1 by the variable temperature 1H NMR measurements. The electrochemical properties of 8a-f were also studied by CV measurement. Upon treatment with DDQ, 8a-c underwent oxidative cyclization to give two products, 7 and 9-substituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborates (11a-c·BF4 and 12a-c·BF4) in various ratios, while that of disubstituted derivatives 8d-f afforded 7,9-disubstituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate (11d-f·BF4) in good yields. Similarly, preparation of known 5-(1′-oxocycloheptatrien-2′-yl)-pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (14a-d) and novel derivatives 14e,f was carried out. Treatment of 14a-c with aq. HBF4/Ac2O afforded two kinds of novel products 11a-c·BF4 and 12a,c·BF4 in various ratios, respectively, while that of 14d-f afforded 11d-f. The product ratios of 11a-c·BF4 and 12a-c·BF4 observed in two kinds of cyclization reactions were rationalized on the basis of MO calculations of model compounds 20a and 21a. The spectroscopic and electrochemical properties of 11a-f·BF4 and 12a-c·BF4 were studied, and structural characterization of 11c·BF4 based on the X-ray crystal analysis and MO calculation was also performed.  相似文献   

13.
The irradiation of the title compounds [(Z)-1] having (S)-(+)-sec-butyl, (−)-mentyl and related chiral auxiliaries in methanol and 1,2-dichloroethane containing 2-(diethylamino)ethanol afforded chiral auxiliary-substituted (4S,5S)-, (4R,5R)-, (4R,5S)- and (4S,5R)-4,5-dihydrooxazole derivatives (2) along with (E)-1. It was found that the photoinduced electron transfer-initiated cyclization of 1 gives either of the two diastereomers for cis-2 and trans-2 in diastereomeric excess whose value varies from 6% to 81% depending on solvent and chiral auxiliary.  相似文献   

14.
Dawei Ma  Wei Zhu 《Tetrahedron letters》2003,44(47):8609-8612
Condensation of protected δ-hydroxy-β-amino ester 7 with a β-keto ester provides vinylogous urethane 8, which is cyclized under the action of t-BuOK followed by decarboxylation to afford enone 12. Hydrogenation of 12 or its N,O-diprotected derivative 13 gives 2,6-cis-disubstituted piperdines. Using these intermediates, (−)-8-epi-hyperaspine is synthesized.  相似文献   

15.
A synthesis of functionalized phenolic α-amino-alcohol (±)-13 as synthetic precursor of the catechol tetrahydroisoquinoline structure of phthalascidin 650 is disclosed. Starting from 3-methylcatechol 5, eight steps of synthesis give rise to the synthesis of phenolic α-amino-alcohol (±)-13 in 27% overall yield. This synthetic strategy involves the elaboration of fully functionalized aromatic aldehyde 8 and its transformation into a phenolic α-amino-alcohol (±)-13, through a Knoevenagel condensation, simultaneous reduction of nitroketene and ester functions and hydrogenolysis of the benzyl protecting group. The pentacycle (±)-18 was obtained after four additional steps. The Pictet-Spengler cyclisation between the phenolic α-amino-alcohol (±)-13 and N-protected α-amino-aldehyde 4 allowed to obtain (1,3′)-bis-tetrahydroisoquinoline 14 with N-methylated and N-Fmoc removed. The last step was a Swern oxidation for allowing an intramolecular condensation.  相似文献   

16.
Sesquiterpenoids (+)-trans-dracuncuflifoliol (1) and (+)-4-hydroxyoppositan-7-one (2) were prepared stereoselectively from enantiomerically pure (7aR)-7a-methyl-1,2,5,6,7,7a-hexahydro-4H-inden-4-one ((−)-6), whose synthesis was described herein. Conjugate addition of the organocopper (I) reagent 10 to (−)-6, followed by epimerization of the ring junction, generated 3 of the 4 contiguous chiral centers of both natural products.  相似文献   

17.
Photoinduced electron transfer reactions of the title N-acyl-α-dehydronaphthylalaninamides [(Z)-1] with (S)-1-phenylethylamino and (S)-alaninamide auxiliary groups in methanol containing a tertiary amine were shown to form (R,S)- and (S,S)-3,4-dihydrobenzo[f]quinolinone derivatives (2) in excess at rt, respectively. The magnitude of diastereomeric excess (de) was varied in the range of −5-26% for (R,S)-2 and 16-92% for (S,S)-2, depending on the chiral auxiliary and reaction temperature. The mechanism of asymmetric induction in the photocyclization process eventually affording diastereomeric 2 was discussed based on solvent, tertiary amine, chiral auxiliary and temperature effects on the de value as well as on MM2 and PM5 calculations for the diastereomeric enol intermediates.  相似文献   

18.
Nicolas Robert 《Tetrahedron》2007,63(18):3702-3706
A concise enantiopure synthesis of six monoterpenic alkaloids of the actinidine series possessing a cyclopenta[c]pyridine skeleton, (+)-deoxyrhexifoline (4), (+)-boschniakinic acid (5), (+)-boschniakine (6), (−)-plantagonine (7), (−)-indicaine (8) and (−)-tecostidine (9) is reported starting with the chiral precursor 3-bromo-5-((4R)-phenyloxazolin-2-yl)pyridine (10). It involves a C-4 regioselective connection of a butene appendice and an intramolecular 5-exo-trig Heck annulation sequence followed by hydrogenation of the exocyclic alkene. Mixture of (3R)- and (3S)-7-((4R)-phenyloxazolin-2-yl)cyclopenta[c]pyridines was separated by HPLC before being transformed into enantiopure natural products (4-9) by modification of the oxazoline group.  相似文献   

19.
The enantioselective synthesis of indolizidines (−)-203A, (−)-209B, (−)-231C, (−)-233D, and (−)-235B″ has been achieved and the absolute stereochemistry of both indolizidines 203A and 233D was established as 5S,8R,9S. The relative stereochemistry of natural 231C was established by the present asymmetric synthesis.  相似文献   

20.
Helically chiral azahexahelicene 3 was prepared in four steps using the Mizoroki-Heck coupling followed by classical oxidative photodehydrocyclisation. Resolution of this new chiral system was achieved through separation by HPLC providing (−)- and (+)-3 in high optical purity. The absolute configurations of (−)- and (+)-3 were assigned as M and P, respectively, by means of circular dichroism. Each of the hexacyclic systems (M)-(−)- and (P)-(+)-3 was reacted with boron tribromide to provide the corresponding helical pyridophenols in good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号