首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spectrophotometric method for the determination of trace surfactants with Erythrosine B (EB) based on the aqueous reaction and the collection on a membrane filter by filtration was studied. Cationic surfactants (CS+), such as a quaternary ammonium ion, and polyoxyethylene non-ionic surfactants (NS) in the presence of potassium ion, containing a long-chain alkyl group associate with EB buffered at pH 5.5. CS+ associates with anionic surfactants (AS). For the determination of CS+, four methods were employed: the collection of the ion associate of CS+ with EB on a mixed cellulose ester (MCE) or PTFE membrane filter, the collection of the ion associate of CS+ with AS on a PTFE membrane filter followed by the ion exchange of AS with EB, and the first collection of CS+ followed by the second collection of EB on a PTFE membrane filter. For the determination of AS, the collection of the ion associate of AS with CS+ on a PTFE membrane filter followed by the ion exchange of AS with EB was done. For the determination of NS, the ion associate of NS with EB was collected on a MCE membrane filter. The MCE membrane filter with the analyte was dissolved in methyl cellosolve. The analyte on the PTFE membrane filter was eluted with ethanol. The CS+ up to 5×10−7 M can be determined by the absorbance at 542 nm of the methyl cellosolve solution or the absorbance at 535 nm of the ethanol solution. The AS up to 5×10−7 M can be determined by the absorbance at 536 nm of the ethanol solution. The NS up to 2.53×10−6 M can be determined by the absorbance at 537 nm of the methyl cellosolve solution. This is the sensitive method for the determination of 10−8 to 10−7 M order of ionic surfactants and 10−7 to 10−6 M order of NS without toxic organic solvents.  相似文献   

2.
An indirect voltammetric method is described for determination of cyanide ions and hydrogen cyanide, using the effect of cyanide on cathodic adsorptive stripping peak height of Cu-adenine. The method is based on competitive Cu complex formation reaction between adenine at the electrode surface and CN ions in solution. Under the optimum experimental conditions (pH=6.42 Britton-Robinson buffer, 1×10−4 M copper and 8×10−7 M adenine), the linear decrease of the peak current of Cu-adenine was observed, when the cyanide concentration was increased from 5×10−8 to 8×10−7 M. The detection limit was obtained as 1×10−8 M for 60 s accumulation time. The relative standard deviations for six measurements were 4 and 2% for the cyanide concentrations of 5×10−8 and 2×10−7 M, respectively. The method was applied to the determination of cyanide in various industrial waste waters such as electroplating waste water and also for determination of hydrogen cyanide in air samples.  相似文献   

3.
Two highly sensitive chemiluminescence (CL) systems are described. The method is based on the CL generated during the oxidation of luminol by N-bromosuccinimide (NBS) and N-chlorosuccinimide (NCS) in alkaline medium. The emission intensity is reduced by the presence of some surfactants at concentrations lower than critical micelle concentration (cmc).A new, simple, rapid and selective flow injection CL method for the determination of cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) is proposed. Their determinations are based on the reducing effect on the emission intensity of NBS-luminol and NCS-luminol chemiluminescent reactions. The effect of analytical and flow injection analysis (FIA) variables on these CL systems and on the determination of the cationic surfactants are discussed. The optimum parameters for the determination of cationic surfactants were studied and were found to be the following: luminol, 1×10−6 M; NBS and NCS both, 5×10−2 M; NaOH, 5×10−2 M and flow rate, 3.5 ml min−1.  相似文献   

4.
An analytical procedure with improved sensitivity was developed for cyanide determination in natural waters, exploiting the reaction with the complex of Cu(I) with 2,2′-biquinoline 4,4′-dicarboxylic acid (BCA). The flow system was based on the multi-pumping approach and long pathlength spectrophotometry with a flow cell based on a Teflon AF 2400® liquid core waveguide was exploited to increase sensitivity. A linear response was achieved from 5 to 200 μg L−1, with coefficient of variation of 1.5% (n = 10). The detection limit and the sampling rate were 2 μg L−1 (99.7% confidence level), and 22 h−1, respectively. Per determination, 48 ng of Cu(II), 5 μg of ascorbic acid and 0.9 μg of BCA were consumed. As high as 100 mg L−1 thiocyanate, nitrite or sulfite did not affect cyanide determination. Sulfide did not interfere at concentrations lower than 40 and 200 μg L−1 before or after sample pretreatment with hydrogen peroxide. The results for natural waters samples agreed with those obtained by a fluorimetric flow-based procedure at the 95% confidence level. The proposed procedure is then a reliable, fast and environmentally friendly alternative for cyanide determination in natural waters.  相似文献   

5.
Wen Pan 《Talanta》2007,73(4):651-655
An amperometric sensor for the detection of difenidol, a tertiary amine-containing analyte, was proposed. Ruthenium(II) tris(bipyridine)/multi-walled carbon nanotubes/Nafion composite film was suggested to modify the glassy carbon electrode. The modified electrode was shown to be an excellent amperometric sensor for the detection of difenidol hydrochloride. The linear range is from 1.0 × 10−6 to 3.3 × 10−5 M with a correlation coefficient of 0.998. The limit of detection was 5 × 10−7 M, which was obtained through experimental determination based on a signal-to-noise ratio of three. The sensor was employed to the determination of the active ingredients in the tablets containing difenidol hydrochloride.  相似文献   

6.
Carbon and gold microdisc electrodes (30 and 10 μm, respectively) have been tested as substrates for in situ bismuth film plating from unstirred solutions of variable acetate buffer content and were subsequently used in the anodic stripping voltammetry determination of Pb(II) and Cd(II) ions. The effects of Bi(III) concentration, analyte accumulation time, stirring as well as supporting electrolyte content have been studied. Under optimal conditions good voltammetric responses were obtained by means of square wave anodic stripping voltammetry in unstirred analyte solutions of 5 × 10−8 to 10−6 M, even in the absence of added buffer. In an indicative application, Pb(II) ion levels were determined in tap water using bismuth-plated carbon microdisc electrodes.  相似文献   

7.
The global determination of anionic surfactants is proposed by using flow injection potentiometry, and by employing specifically developed tubular flow-through ion selective electrodes (ISEs). The low concentration requirements needed for the environmental application are obtained with an on-line preconcentration stage embedded in the flow system, which has as its goal the unattended monitoring of anionic surfactants in surface waters. The on-line preconcentration is achieved by employing an octadecylsilica extraction disk in the FIA system. This stage performs the solid phase extraction (SPE) for the enrichment and purification of the target analytes from common interfering anions. The outlined procedure improves the detection limit of a direct injection system, which is decreased from 10 to 0.25 μM by using a preconcentration volume of 3.0 mL and 50 μL of 75% acetonitrile in water as the eluent. Precision was estimated as 2.9% relative standard deviation (n = 20) for a 0.25 μM (0.070 mg·L− 1) sodium docecylsulfate standard.  相似文献   

8.
A highly sensitive determination of mercury in the presence of Cu(II) using a boron-doped diamond (BDD) thin film electrode coupled with sequential injection–anodic stripping voltammetry (SI–ASV) was proposed. The Cu(II) was simultaneously deposited with Hg(II) in a 0.5 M HCl supporting electrolyte by electrodeposition. In presence of an excess of Cu(II), the sensitivity for the determination of Hg(II) was remarkably enhanced. Cu(II) and Hg(II) were on-line deposited onto the BDD electrode surface at −1.0 V (vs. Ag/AgCl, 3 M KCl) for 150 s with a flow rate of 14 μL s−1. An anodic stripping voltammogram was recorded from −0.4 V to 0.25 V using a frequency of 60 Hz, an amplitude of 50 mV, and a step potential of 10 mV at a stopped flow. Under the optimal conditions, well-defined peaks of Cu(II) and Hg(II) were found at −0.25 V and +0.05 V (vs. Ag/AgCl, 3 M KCl), respectively. The detection of Hg(II) showed two linear dynamic ranges (0.1–30.0 ng mL−1 and 5.0–60.0 ng mL−1). The limit of detection (S/N = 3) obtained from the experiment was found to be 0.04 ng mL−1. The precision values for 10 replicate determinations were 1.1, 2.1 and 2.9% RSD for 0.5, 10 and 20 ng mL−1, respectively. The proposed method has been successfully applied for the determination of Hg(II) in seawater, salmon, squid, cockle and seaweed samples. A comparison between the proposed method and an inductively coupled plasma optical emission spectrometry (ICP-OES) standard method was performed on the samples, and the concentrations obtained via both methods were in agreement with the certified values of Hg(II), according to the paired t-test at a 95% confidence level.  相似文献   

9.
Three primary nerve agent degradation products (ethyl-, isopropyl- and pinacolyl methylphosphonic acid) have been determined in water samples using on-line solid phase extraction-liquid chromatography and mass spectrometry (SPE-LC–MS) with electrospray ionisation. Porous graphitic carbon was employed for analyte enrichment followed by hydrophilic interaction chromatography. Diethylphosphate was applied as internal standard for quantitative determination of the alkyl methylphosphonic acids (AMPAs). By treating the samples with strong cation-exhange columns on Ba, Ag and H form, the major inorganic anions in water were removed by precipitation prior to the SPE-LC–MS determination. The AMPAs could be determined in tap water with limits of detection of 0.01–0.07 μg L−1 with the [M−H] ions extracted at an accuracy of ±5 mDa. The within and between assay precisions at analyte concentrations of 5 μg L−1 were 2–3%, and 5–9% relative standard deviation, respectively. The developed method was employed for determination of the AMPAs in three natural waters and a simulated waste water sample, spiked at 5 μg L−1. Recoveries of ethyl-, isopropyl- and pinacolyl methylphosphonic acid were 80–91%, 92–103% and 99–106%, respectively, proving the applicability of the technique for natural waters of various origins.  相似文献   

10.
The determination of bismuth requires sufficiently sensitive procedures for detection at the μg L−1 level or lower. W-coil was used for on-line trapping of volatile bismuth species using HGAAS (hydride generation atomic absorption spectrometry); atom trapping using a W-coil consists of three steps. Initially BiH3 gas is formed by hydride generation procedure. The analyte species in vapor form are transported through the W-coil trap held at 289 °C where trapping takes place. Following the preconcentration step, the W-coil is heated to 1348 °C; analyte species are released and transported to flame-heated quartz atom cell where the atomic signal is formed. In our study, interferences have been investigated in detail during Bi determination by hydride generation, both with and without trap in the same HGAAS system. Interferent/analyte (mass/mass) ratio was kept at 1, 10 and 100. Experiments were designed for carrier solutions having 1.0 M HNO3. Interferents such as Fe, Mn, Zn, Ni, Cu, As, Se, Cd, Pb, Au, Na, Mg, Ca, chloride, sulfate and phosphate were examined. The calibration plot for an 8.0 mL sampling volume was linear between 0.10 μg L−1 and 10.0 μg L−1 of Bi. The detection limit (3 s/m) was 25 ng L−1. The enhancement factor for the characteristic concentration (Co) was found to be 21 when compared with the regular system without trap, by using peak height values. The validation of the procedure was performed by the analysis of the certified water reference material and the result was found to be in good agreement with the certified values at the 95% confidence level.  相似文献   

11.
Gomez V  Ferreres L  Pocurull E  Borrull F 《Talanta》2011,84(3):859-866
Solid-phase extraction (SPE) combined with liquid chromatography electrospray mass spectrometry (LC-(ESI)MS) was used to determine 16 non-ionic and anionic surfactants in different environmental water samples at ng L−1 levels. The proposed method is sensitive and simple and has good linear range and detection limits (less than 50 ng L−1) for most compound classes.The effect of ion suppression was studied in aqueous matrices from several treatment plants—including urban and industrial wastewater treatment plants (WWTPs), drinking-water treatment plants (DWTPs) and seawater desalination plants (SWDPs)—and it was considered when quantifying our samples. In addition, conventional treatments and tertiary treatments that use advanced membrane technologies, such as ultrafiltration (UF) and reverse osmosis (RO) were evaluated in order to determine their efficiency in eliminating these compounds.The concentrations of non-ionic surfactants in the raw waters studied ranged from 0.2 to 100 μg L−1. In effluents, the concentrations ranged from 0.1 to 5 μg L−1, which reflects consistent elimination. Anionic surfactants were present in all waters studied at higher levels. Levels up to 3900 μg L−1 of linear alkylbenzene sulfonates (LASs) and 32,000 μg L−1 of alkyl ethoxysulfates (AESs) were detected in urban WWTP influents, while levels up to 25 μg L−1 of LASs and 114 μg L−1 of AESs were found in drinking-water and desalination treatment plants.The results indicate that conventional processes alone are not sufficient to completely remove the studied surfactants from waste streams. Tertiary treatments that use advanced membrane technologies such as UF and RO can further reduce the amount of target compounds in the effluent water.  相似文献   

12.
Preparation and application of gold 2-mercaptosuccinic acid self-assembled monolayer (Au-MSA SAM) electrode for determination of iron(III) in the presence of iron(II) is described by cyclic voltammetry, electrochemical impedance spectroscopy, and Osteryoung square wave voltammetry. The square wave voltammograms showed a sharp peak around positive potentials +0.250 V that was used for construction of the calibration curve. Parameters influencing the method were optimized. A linear range calibration curve from 1.0 × 10−10 to 6.0 × 10−9 M iron(III) with a detection limit of 3.0 × 10−11 M and relative standard deviation (R.S.D.) of 6.5% for n = 8 at 1.0 × 10−9 M iron(III) was observed in the best conditions. Possible interferences from the coexisting ions were also investigated. The results demonstrated that sensor could be used for determination of iron(III) in the presence of various ions. The validity of the method and applicability of the sensor were successfully tested by determining of iron(III) in natural waters (tap and mineral waters) and in a pharmaceutical sample (Venofer® ampoule) without interference from sample matrix. The experimental data are presented and discussed from which the new sensor is characterized.  相似文献   

13.
Screen-printed electrodes modified with carbon paste that consisted of graphite powder dispersed in ionic liquids (IL) were used for the electrochemical determination of dopamine, adrenaline and dobutamine in aqueous solutions by means of cyclic voltammetry. The IL plays a dual role in modifying compositions, acting both as a binder and chemical modifier (ion-exchanger); ion-exchange analyte pre-concentration increases analytical signal and improves the sensitivity. Calibration graphs are linear in concentration range 3.9 × 10−6 to 1.0 × 10−4 M (dopamine), 2.9 × 10−7 to 1.0 × 10−4 M (adrenaline) and 1.7 × 10−7 to 1.0 × 10−4 M (dobutamine); detection limits are (1.2 ± 0.1) × 10−6, (1.3 ± 0.1) × 10−7 and (5.3 ± 0.1) × 10−8 M, respectively. Using an additive of Co (III) tetrakis-(tert-butyl)-phthalocyanine leads to the increase of signal and lowering detection limit. Some practical advises concerning both the sensor design and selectivity of catecholamine determination are provided.  相似文献   

14.
Safavi A  Maleki N  Shahbaazi HR 《Talanta》2006,68(4):1113-1119
A sensitive method for the determination of chromium ion(VI) in complex matrices such as crude oil and sludge is presented based on the decreasing effect of Cr(VI) on cathodic adsorptive stripping peak height of Cu-adenine complex. Under the optimum experimental conditions (pH 7.5 Britton-Robinson buffer, 5 × 10−5 M copper, 8 × 10−6 M adenine and accumulation potential −250 mV versus Ag/AgCl), a linear decrease of the peak current of Cu-adenine was observed, when the chromium(VI) concentration was increased from 5 μg L−1 to 120 μg L−1. Detection limit of 2 μg L−1 was achieved for 120 s accumulation time. The relative standard deviations (R.S.D., %) were 1.8% and 4% for chromium(VI) concentrations of 18 μg L−1 and 100 μg L−1, respectively. The method was applied to the determination of chromium(VI) in the presence of high levels of chromium(III), in various real samples such as crude oil, crude oil tank button sludge, waste water and tap water samples. Effects of foreign ions and surfactants on the voltammetric peak and the influences of instrumental and analytical parameters were investigated in detail. The accuracy of the results was checked by ICP and/or AA.  相似文献   

15.
This paper presents an alternative analytical method employing energy dispersive X-ray fluorescence (EDXRF) to determine copper, iron, nickel and zinc ions in ethanol fuel samples after a pre-concentration procedure. Our pre-concentration strategy utilizes analyte retention on cation exchange chromatography paper, a convenient substrate for direct EDXRF measurements. The repeatability, expressed in terms of RSD of standard solutions containing 0.25 μg mL−1 of Cu, Fe, Ni and Zn, and calculated from fifteen consecutive measurements, was 2.5, 2.8, 3.0, and 2.7%, respectively. The limits of detection (LOD), defined as the analyte concentration that gives a response equivalent to three times the standard deviation of the blank (n = 10), were found to be 13, 15, 15 and 12 μg L−1 for Cu, Fe, Ni and Zn, respectively. The proposed method was applied to Cu, Fe, Ni and Zn determination in hydrated ethanol fuel samples collected from different gas stations.  相似文献   

16.
In this work a fast, automatic solid-phase extraction procedure hyphenated to HPLC-UV is proposed for screening of priority phenolic pollutants in waters at ng mL−1 levels. A flow through column, containing polystyrene-divinylbenzene sorbent, was incorporated to a multisyringe flow injection system (MSFIA), where the sample loading and analyte elution were carried out after computer control. The MSFIA system also directed the eluent to fill the injection loop of the chromatograph, coupling the sample preparation to its determination. High enrichment factors were attained for phenol and ten of its derivatives (mean value 176 for 50 mL of sample), with LOD values lower than 1 ng mL−1 for the maximum volume of sample used (100 mL). For all analytes, mean recoveries between 89 and 103% were obtained for different water matrices. Certified reference material and a contaminated soil (RTC-CRM 112) were also tested successfully. The determination frequency was 4-10 h−1, providing an automatic, fast and reliable tool for water quality and environmental monitoring.  相似文献   

17.
Zeng B  Huang F 《Talanta》2004,64(2):380-386
A novel multi-walled carbon nanotubes/(3-mercaptopropyl)trimethoxysilane (MPS) bilayer modified gold electrode was prepared and used to study the electrochemcial behavior of fluphenazine and determine it. Fluphenazine could effectively accumulate at this electrode and produce two anodic peaks at about 0.78 V and 0.93 V (versus SCE). The peak at about 0.78 V was much higher and sensitive, thus it could be applied to the determination. Various conditions were optimized for practical application. Under the selected conditions (i.e. 0.05 M pH 3.5 HCOOH-HCOONa buffer solution, 5 μl 1 mg ml−1 multi-walled carbon nanotubes for Φ=2.0 mm electrode, accumulation at open circuit for 180 s), the anodic peak current was linear to fluphenazine concentration in the range from 5×10−8 to 1.5×10−5 M with correlation coefficient of 0.9984, the detection limit was 1×10−8 M. For a 1×10−5 M fluphenazine solution, the relative standard deviation of peak current was 2.51% (n=8). This method was successfully applied to the determination of fluphenazine in drug samples and the recovery was 96.4-104.4%. The electrode could be easily regenerated and exhibited some selectivity, but some surfactants reduced the peak current greatly. The modified electrode was characterized by alternating current impedance and electrochemical probe.  相似文献   

18.
A new and simple flow injection system procedure has been developed for the indirect determination of cyanide. The method is based on insertion of aqueous cyanide solutions into an on-line cadmium carbonate packed column (25% m/m suspended on silica gel beads) and a sodium hydroxide with pH 10 is used as the carrier stream. The eluent containing the analyte as cadmiumcyanide complexes, produced from reaction between cadmium carbonate and cyanide, measured by flame atomic absorption spectrometry. The absorbance is proportional to the concentration of cyanide in the sample. The linear range of the system is up to 15 mg L−1 with a detection limit 0.2 mg L−1 and sampling rate 72 h−1. The method is suitable for determination of cyanide in industrial waste waters with a relative standard deviation better than 1.22%.  相似文献   

19.
A three-phase hollow fiber liquid-phase microextraction (HF-LPME) coupled either with capillary electrophoresis (CE) or high performance liquid chromatography (HPLC) with UV detection methods was successfully developed for the determination of trace levels of the anti-diabetic drug, rosiglitazone (ROSI) in biological fluids. The analyte was extracted into dihexyl ether that was immobilized in the wall pores of a porous hollow fiber from 10 mL of aqueous sample, pH 9.5 (donor phase), and was back extracted into the acceptor phase that contained 0.1 M HCl located in the lumen of the hollow fiber. Parameters affecting the extraction process such as type of extraction solvent, HCl concentration, donor phase pH, extraction time, stirring speed, and salt addition were studied and optimized. Under the optimized conditions (extraction solvent, dihexyl ether; donor phase pH, 9.5; acceptor phase, 0.1 M HCl; stirring speed, 600 rpm; extraction time, 30 min; without addition of salt), enrichment factor of 280 was obtained. Good linearity and correlation coefficients of the analyte was obtained over the concentration ranges of 1.0–500 and 5.0–500 ng mL−1 for the HPLC (r2 = 0.9988) and CE (r2 = 0.9967) methods, respectively. The limits of detection (LOD) and limits of quantitation (LOQ) for the HPLC and CE methods were (0.18, 2.83) and (0.56, 5.00) ng mL−1, respectively. The percent relative standard deviation (n = 6) for the extraction and determination of three concentration levels (10, 250, 500 ng mL−1) of ROSI using the HPLC and CE methods were less than 10.9% and 13.2%, respectively. The developed methods are simple, rapid, sensitive and are suitable for the determination of trace amounts of ROSI in biological fluids.  相似文献   

20.
This paper describes a potentiometric method for determination of l-histidine (l-his) in aqueous media, using a carbon paste electrode modified with tetra-3,4-pyridinoporphirazinatocopper(II) (Cu (3,4tppa)). The electrode exhibits linear response to the logarithm of the concentration of l-histidine from 2.4 × 10−5 to 1.0 × 10−2 M, with a response slope of −49.5 ± 1 mV and response time of about 1.5 min. The detection limit according to IUPAC recommendation was 2.0 × 10−5 M. The proposed electrode shows a good selectivity for l-his over a wide variety of anions. This chemically modified carbon paste electrode was successfully used for the determination of l-his in a synthetic serum and RANDOX control serum solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号