首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure of magnetorheological (MR) fluids depends on the strength of the magnetic field applied and on the mode of its application. The ultrasonic wave propagation velocity changes under the effect of an external magnetic field as a result of formation of clusters arranged along the direction of the field in the MR fluids. Therefore, we propose a qualitative analysis of these clustering structures by measuring properties of ultrasonic propagation. Since the MR fluids are opaque, the non-contact inspection using this ultrasonic technique can be very useful. In this study, we measured ultrasonic propagation velocity in MR fluid influenced by an external magnetic field for different swept rate precisely. With increasing magnetic field intensity, the changes of the ultrasonic wave velocity are more pronounced. Sedimentation effect takes place in certain time for different swept rate due to magnetic particle size and it follows linear relationship in log scale. Significant differences of the ultrasonic wave velocity are established between the case when the field is swept at a constant rate and the case when it is stepped up.  相似文献   

2.
Magnetite particles with different average diameter (Dm) suitable for magnetic fluid hyperthermia (MFH) were synthesized by controlled coprecipitation technique. In this method, the reaction pH was stabilized using the pH buffer and the average particle diameter decreased with increasing reaction pH. The size-dependent magnetic behavior of the magnetite nanoparticles was studied and the optimum size range required for magnetic fluid hyperthermia (MFH) has been arrived at. Among the samples studied, the maximum specific absorption rate of 15.7 W/g was recorded for the magnetite sample with Dm of 13 nm, when exposed to an AC magnetic field strength of 3.2 kA/m and a frequency of 600 kHz. The AC magnetic properties suggested that the size distribution of the sample was bimodal with average particle size less than ∼13 nm.  相似文献   

3.
研制了一台磁场可调微波离子源, 在离子源放电室处需要的磁场由一组永久磁铁产生, 永久磁铁外部安装了铁磁回路, 铁磁回路的结构可以很容易的手动调整, 通过调整铁磁回路的结构, 可以在放电室产生要求的磁场. 在调试过程中, 也可以调整铁磁回路以改变离子源内部磁场结构, 有利于获得最佳放电条件. 该源在测试中, 从3mm直径的引出孔引出了17mA的离子束.  相似文献   

4.
磁热场协同作用下的传热传质强化   总被引:1,自引:0,他引:1  
通过三维非稳态动量和能量方程的模拟,对圆管通道内空气的磁热风作用机理进行了分析。得出了无量纲长径比为 20、30、62和100,带电线圈和管道的直径比从2到200时磁场密度的梯度的影响规律。磁场与温度场的协同作用改变了速度和温度边界层的分布,存在最优条件下的强化传热、传质效果。  相似文献   

5.
For a number of reasons, it is desirable to fabricate coils which, for a known current, shall produce predetermined values of the magnetic field intensity at a number of points within a nuclear magnetic resonance imager.

The calculation of the magnetic field intensity at a set of points involves the integration of the Biot-Savart equation for all components of the segments of conductor which make up the coil. This process in itself is a rather formidable task. When this process is parameterized in terms of coil diameter, coil spacing, etc. the problem is to determine the values of these parameters to match values of magnetic field intensities which are desired. The problem thereby increases in complexity to the point where, by ordinary methods, the problem becomes intractable.

A generalized solution technique has been developed on a digital computer to implement the rotational discrimination nonlinear regression techniques of Faris, Law and Letcher to find the best solution to this problem. The problem is posed by integrating the Biot-Savart equation. This produces algebraic expressions for incorporation into the optimization program which is executed on a computer in a conversational mode.

This technique was employed to specify the dimensions of a rectangular surface coil for the investigation of the whole human spine.  相似文献   


6.
Resonant quantum tunneling of the Néel vector between nonequivalent magnetic wells is investigated theoretically for a nanometer-scale single-domain antiferromagnet with biaxial crystal symmetry in the presence of an external magnetic field applied along the easy anisotropy axis, based on the two-sublattice model. Both the Wentzel-Kramers-Brillouin exponent and the preexponential factors are evaluated in the instanton contribution to the tunneling rate for finite and zero magnetic fields by applying the instanton technique in the spin-coherent-state path-integral representation, respectively. The quantum interference or spin-parity effects induced by the topological phase term in the Euclidean action are discussed in the rate of quantum tunneling of the Néel vector. In the absence of an external applied magnetic field, the effect of destructive phase interference or topological quenching on resonant quantum tunneling of the Néel vector is evident for the half-integer excess spin antiferromagnetic nanoparticle. In the weak field limit, the tunneling rates are found to oscillate with the external applied magnetic field for both integer and half-integer excess spins. We discuss the experimental condition on the applied magnetic field which may allow one to observe the topological quenching effect for nanometer-scale single-domain antiferromagnets with half-integer excess spins. Tunneling behavior in resonant quantum tunneling of the magnetization vector between nonequivalent magnetic wells is also studied for a nanometer-scale single-domain ferromagnet by applying the similar technique, but in the large noncompensation limit. Received 4 June 1999  相似文献   

7.
A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented.  相似文献   

8.
用有限元法对轴向磁场存在下3英寸磷化铟单晶液封提拉法生长中的传热和流动进行了求解.结果表明:液封改变了晶体表面被封部分的换热,进而影响生长界面的形状.增加磁场强度能有效减弱熔体和封层内的流动,并使生长界面形状发生变化。增加提拉速度,生长界面形状由凸变凹.随晶体转速的增加,多涡胞流动出现.  相似文献   

9.
For a number of reasons, it is desirable to fabricate coils which, for a known current, shall produce predetermined values of the magnetic field intensity at a number of points within a nuclear magnetic resonance imager. The calculation of the magnetic field intensity at a set of points involves the integration of the Biot-Savart equation for all components of the segments of conductor which make up the coil. This process in itself is a rather formidable task. When this process is parameterized in terms of coil diameter, coil spacing, etc. the problem is to determine the values of these parameters to match values of magnetic field intensities which are desired. The problem thereby increases in complexity to the point where, by ordinary methods, the problem becomes intractable. This note describes an algorithm and offers a computer subroutine to calculate magnetic fields for coils of arbitrary shape and complexity for fixed currents.  相似文献   

10.
11.
A Monte Carlo technique has been used to simulate the magnetic properties of a colloidal dispersion of weakly interacting fine ferromagnetic particles. The initial susceptibility is shown to obey a Curie-Weiss like law in its variation with temperature. The ordering temperature in the Curie-Weiss law is found to increase with the diameter of the particles, the increase being associated with an increase in the local order in the system. Data from the Monte Carlo simulation is also used to assess the effects of interactions on the determination of particle size parameters from magnetic measurements. Investigation of the spatial correlation within the system reveals evidence of field induced particle agglomeration.  相似文献   

12.
A new measurement of the anomalous magnetic moment of the positive muon aμ is proposed with a novel technique utilizing an ultra-cold muon beam accelerated to 300 MeV/c and a 66 cm-diameter muon storage ring without focusing-electric field.This measurement will be complimentary to the previous measurement that achieved 0.54 ppm accuracy with the magic energy of 3.1 GeV in a 14 m diameter storage ring.The proposed experiment aims to achieve the sensitivity down to 0.1 ppm.  相似文献   

13.
张树玲  陈炜晔  张勇 《物理学报》2015,64(16):167501-167501
以直径32 μm的熔体抽拉Co基非晶金属纤维为研究对象, 分析了该纤维不同激励条件下的巨磁阻抗(giant magneto impedance, GMI)效应. 实验结果表明: 这类纤维的GMI效应具有不对称性特点, 即 AGMI (asymmetric GMI)效应. 同时, 发现AGMI效应随激励条件不同而变化, 随交流频率或者激励幅值升高而逐渐增强; 当存在一定偏置电压时, AGMI效应大幅增强. 通过研究纤维的磁化过程, 分析了Co基金属纤维的AGMI效应. 由于Co基熔体抽拉纤维具有螺旋各向异性以及磁滞的存在使得GMI效应具有不对称性, 频率升高或者激励电流幅值增加有利于壳层畴环向磁化, AGMI增强. 当在纤维两端施加偏置电压时, 偏置电流诱发环向磁场增强了环向磁化, AGMI效应提高; 偏置电压较低时磁场响应灵敏度提高, 同时磁化翻转向高场移动, 阻抗线性变化对应的直流磁场区间增大. 这一方面拓宽了GMI传感器工作区间及灵敏度, 另一方面不利于获得更大的磁场响应灵敏度. 10 MHz (5 mA)激励时, 施加1 V强度的偏置电压后, 对应的磁场灵敏度从616 V/T 提高至5687 V/T; 偏置电压为2 V时, 灵敏度降低到4525 V/T. 因此, 可以通过适当提高环向磁场的方法获得大的磁场响应灵敏度及阻抗变化线性区域.  相似文献   

14.
We show that a magnetic flux tube can grow in strength and size provided the temperature increases outward at the edge of the tube where the axial magnetic field declines to its external value. The radius of the tube increases at a rate determined by our theory. It is the coincidence of temperature and magnetic field gradients of opposite sign that generates the new field, and if this is lost the tube ceases to grow. The phenomenon is illustrated by adopting plausible distributions for the temperature and magnetic field strength, which yield an expression for the rate of growth of the magnetic field magnitude B. The mechanism provides a possible explanation of the fibrous nature of solar magnetic fields.  相似文献   

15.
We report on the effect of a low amplitude microwave current on the switching field of magnetic layers in a 40 nm diameter pseudo-spin valve grown by template synthesis. We show a frequency dependence at room temperature reflecting the dynamic behavior of the switching process. This is confirmed by numerical calculation of the Landau-Lifschitz-Gilbert equation including Slonczewski Spin Transfer Torque term within a macrospin approximation. The possibility to modulate the switching fields of a nanomagnet with microwave currents offers an alternative to the magnetic switching assisted by microwave magnetic field.  相似文献   

16.
A precision electromagnet generating a magnetic field with an induction ranging from 0.05 to 0.50 T is designed, manufactured, and studied. It is intended for a magnetic resonance mass spectrometer with a rated resolution of about 106. The magnetic field inhomogeneity on a circular orbit with a diameter of 400 mm along which the ion beam moves is no more than ±1 × 10?5 of induction B 0 at the center of the magnetic gap. At any point of the orbit, the magnetic field is kept constant with an accuracy of higher than 10?6 for several minutes, which is sufficient to record mass spectra.  相似文献   

17.
The possibilities of dynamically polarizing proton spin system via the quadrupole 14N spin system in low magnetic field are analyzed. The increase of the proton magnetization is calculated. The polarization rate of the proton spin system is related to the transition probabilities per unit time between the 14N quadrupole energy levels and proton energy levels. The experiments performed in 1,3,5-triazine confirm the results of the theoretical analysis. A new double resonance technique is proposed for the measurement of nuclear quadrupole resonance frequencies νQ of the order of 100 kHz and lower. The technique is based on magnetic field cycling between a high and a low static magnetic field and observation of the proton NMR signal in the high magnetic field. In the low magnetic field the quadrupole nuclei and protons resonantly interact at the proton Larmor frequency νH = νQ/2. The quadrupole nuclei are simultaneously excited by a resonant rf magnetic field oriented along the direction of the low static magnetic field. The experimental procedure is described and the sensitivity of the new technique is estimated. Some examples of the measurement of low 14N and 2H nuclear quadrupole resonance frequencies are presented.  相似文献   

18.
Measurements of magnetoimpedance in amorphous wires and microwires at the GHz region are presented here. The maxima observed in the magnetoimpedance of different samples in the high frequency range are attributed to the ferromagnetic resonance (FMR) that occurs when a sample is submitted to a longitudinal static magnetic field and an oscillating transversal field. While the appearance of a peak on the resistance and the drop of the inductance is explained by means of FMR, the dependence of the width of that resonance with different parameters (magnetic field, stress distribution, sample size, etc.) is not clearly understood, and therefore additional works to explain the value of the resonance width are needed. It is interesting to consider firstly, the influence of the diameter of the sample and thus the stress distribution on the FMR. The size and position of the FMR is found to be completely different for diameters ranging from 24 to 171 μm. The dependence of the frequency value at which the peak of the resistance is found can be explained by the different values of the anisotropy field in the sample. The width of the FMR changes drastically with the diameter of the sample and with the applied magnetic field and they will be discussed in this paper.  相似文献   

19.
The new technique of quadrupole magnetic field-flow fractionation is described. It is a separation and characterization technique for particulate magnetic materials. Components of a sample are eluted from the separation channel at times dependent on the strength of their interaction with the magnetic field. A quadrupole electromagnet allows a programmed reduction of field strength during analysis of polydisperse samples.  相似文献   

20.
迟晓丹  胡勇 《物理学报》2018,67(13):137502-137502
在带有垂直各向异性的二维三角晶格磁体中,当同时存在最近邻铁磁性和第三近邻反铁磁性交换作用时,垂直于膜面施加外磁场会使体系内自旋沿着非共面的方向排列,甚至出现拓扑稳定的斯格明子自旋结构.基于蒙特卡罗模拟方法,本文研究了在该二维阻挫磁体中,竞争性交换作用和外磁场对斯格明子直径的影响.与常规非中心对称的手性磁体中的斯格明子性质类似,外磁场会磁化斯格明子外围自旋而减小斯格明子直径.但是,磁体中反铁磁性交换作用的增强会整体压缩斯格明子.本文结合自旋波理论和蒙特卡罗模拟,首次量化了此类阻挫磁体中斯格明子的直径.结果表明:在弱的反铁磁性交换作用磁体中,斯格明子直径随磁场增大而快速线性减小;随着反铁磁性交换作用的增大,斯格明子直径随外磁场增大的减小变得相对平缓,但在强磁场下也会造成斯格明子直径的加速减小;随着反铁磁性交换作用的增强,斯格明子在不同外磁场下的直径的最大值和中值均从逐渐减小到渐趋稳定,而直径的最小值则从快速减小到表现出很大的涨落.这些现象都可以通过分析斯格明子在不同交换作用和外磁场下的构型和磁能变化加以解释.该项工作阐明了在中心对称的阻挫磁体中斯格明子直径的可调节性,不仅完善了我们对斯格明子本身物理机理的认识,同时也为发展基于斯格明子的新一代存储和逻辑器件提供了理论支撑.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号