首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and texture characteristics of the hybrid organic–inorganic adsorbents, which were obtained by using of two-component systems of “structure-forming agent/trifunctional silane”, are compared as follows: the first component is Si(OC2H5)4 or (C2H5O)3Si–A–Si(OC2H5)3, where A = –(CH2)2– or –C6H4–; the second one is alkoxysilane with amine (–NH2, NH, –NH(CH2)2NH2) and thiol (–SH) groups. The adsorbents, derived from TEOS, have more accessible functional groups (2.6–4.2 mmol/g) than xerogels, which are based on bis(triethoxysilanes) (1.0–2.6 mmol/g). On another hand xerogels derived from bis(triethoxysilanes) have a more extended porous structure (Ssp =516–968 m2/g, Vs = 0.418–1.490 cm3/g, d = 2.5–15.0 nm) than those that are based on TEOS (Ssp = 4–631 m2/g, Vs = 0.005–1.382 cm3/g, d = 2.3–17.7 nm). The geometric dimensions of functional groups have a more essential effect on the parameters of porous structure in the case of TEOS-derived xerogels. Using solid-state NMR spectroscopy, it has been shown that in synthesis of xerogels with the use of TEOS, the molecular frame of globules is formed by structural units Qn (n = 2,3,4), and the functional groups exist as structural units of Tn (n = 2,3). The xerogels obtained with using bis(triethoxysilanes) consist only of structural units of Tn-type (n = 1,2,3).  相似文献   

2.
A metal-organic complex, which has the potential property of absorbing gases, [LaCu6(μ-OH)3(Gly)6im6](ClO4)6 was synthesized through the self-assembly of La3+, Cu2+, glycine (Gly) and imidazole (Im) in aqueous solution and characterized by IR, element analysis and powder XRD. The molar heat capacity, Cp,m, was measured from T = 80 to 390 K with an automated adiabatic calorimeter. The thermodynamic functions [HT − H298.15] and [ST − S298.15] were derived from the heat capacity data with temperature interval of 5 K. The thermal stability of the complex was investigated by differential scanning calorimetry (DSC).  相似文献   

3.
By applying G1 theory to a potential energy surface of the stoichiometry ClO3 three equilibrium geometries were found and their zero-point heats of formation calculated. They correspond to the structures ClO·O2Hf,0 K = 41 kcal/mol), OCl·O2Hf,0 K = 58 kcal/mol), and sym-ClO3Hf,0 K = 48 kcal/mol). It is shown that the formation of an adduct by association of O2 to ClO is endothermic. In the G1 electronic energy calculations the basis set containing additional polarization functions was extended to 6-311G(3df) on chlorine.  相似文献   

4.
The enthalpy change for anabolism is needed to model the growth/respiration relation in plants. If all CO2 production is assigned to catabolism, the anabolic reaction becomes Csubstrate→Cproducts+xO2 with an enthalpy change, ΔHb. Four methods are proposed for determining ΔHb: (a) From the difference in the heats of combustion of substrate and anabolic products (i.e. newly grown tissue). (b) From the composition of newly grown tissue and application of Thornton’s rule. (c) From independently measured values of the specific growth rate, RSG, and of the product (RSG ΔHb). The product (RSG ΔHb) equals (−ΔHCO2RCO2Rq) where RCO2 is the specific rate of CO2 production by respiration, ΔHCO2 is the heat of combustion of respiratory substrate per mole of CO2 and Rq is the specific metabolic heat rate. ΔHb is then calculated as the ratio (RSG ΔHb)/RSG. (d) From (ΔHb=−(Rq/RCO2HCO2) [(1−)/] where is the substrate carbon conversion efficiency obtained from a total carbon balance. The first three methods have been tested and compared on oat seedlings and the last on corn seedlings. ΔHb values from all four methods are in reasonable agreement despite the different assumptions involved.  相似文献   

5.
The molecular structure of trichloronitromethane has been studied in the gas phase using electron diffraction data. The molecules are found to undergo low barrier rotation about the CN bond with a planar CNO2 moiety in agreement with HF/MP2/B3LYP/6-311G(d,p) calculations. The experimental data are consistent with a dynamic model using a potential function for the torsion of V = (V6/2)(1 − cos 6τ). The major geometrical parameters (rg and ) for the eclipsed form, obtained from least squares analysis of the data are as follows: r(NO3) = r(NO4) = 1.213(2) Å, r(CN) = 1.592(6) Å, r(CCl)av = 1.749(1) Å, Cl5CN/Cl6CN = 109. 6°/106.3°(2), O3NC/O4NC = 117. 6°/114.1°(4), τCl5C1N2O3 = 0.0°, and V6 = 0.20(25) kcal/mol.  相似文献   

6.
Gas electron diffraction is applied to determine the geometric parameters of the silacyclobutane molecule using a dynamic model where the ring puckering was treated as a large amplitude motion. The structural parameters and the parameters of the potential function were refined taking into account the relaxation of the molecular geometry estimated from ab initio calculations at the MP2/6-311+G(d, p) level of theory. The potential function has been described as V() = V0[(/e)2 − 1]2 with the following parameters V0 = 0.82 ± 0.60 kcal/mol and e = 33.5 ± 2.7°, where is a puckering angle of the ring.

The geometric parameters at the minimum V() (ra in Å, in degrees and uncertainties given as three times the standard deviations including a scale error) are: r(Si–Hax) = 1.467(96), r(Si–Heq) = 1.468(96), r(Si–C) = 1.885(2), r(C–C) = 1.571(3), r(C–H) = 1.100(3), CSiC = 77.2(9), HSiH = 108.3, SiCHeq = 123.5(16), SiCHax = 111.9(16), CC5Heq = 118.4(24), CC5Hax = 112.3(24), HC3H = 107.7, δ(HSiH) = 6.6, δ(HC3H) = 7.0, where the tilts δ, HSiH, and HC3H are estimated from ab initio constraints. The structural parameters are compared with those obtained for related compounds.  相似文献   


7.
In the group-6 metal hexacarbonyls a number of metal-to-ligand charge-transfer (MLCT) and ligand-field (LF or d → d) states can be excited in the near UV. The latter are repulsive. In equilibrium geometry, most of them are higher than the MLCT states. We probed the dynamics of photodissociation of M(CO)6 → M(CO)5 + CO (M = Cr; some data also for M = Mo) with improved time resolution (10–40 fs), pumping at different wavelengths (mainly 270–345 nm) and probing by nonresonant photoionization. The initial relaxation (e.g. within 12.5 fs from T1u excited at 270 nm) is assigned to direct crossing over to the repulsive surface, from where the subsequent dissociation is also remarkably fast (18 fs in this example). That is, there is no detour via the lowest excited singlet state, in contrast to the usual assumption. Also with 318 and 345 nm excitation a direct MLCT → LF relaxation seems to occur before dissociation. The product M(CO)5 is generated in the S1 state, also at pump wavelengths (345 nm) with barely sufficient energy. It relaxes to S0 through a Jahn–Teller induced conical intersection along pseudorotation coordinates, which stimulates a coherent oscillation in S0 in this vibration. A higher-frequency oscillation, assigned to totally symmetric MC stretch vibrations, is already found in the Franck–Condon region; it persists (with different wavenumbers) also during dissociation and over the subsequent product states. This vibration is transverse to the valley of dissociation, which is barrierless. The wavelength-independent mechanism also implies that there is no triplet contribution (which was previously supposed at long wavelengths) to photochemical dissociation of the hexacarbonyls.  相似文献   

8.
CdII complexes with glycine (gly) and sarcosine (sar) were studied by glass electrode potentiometry, direct current polarography, virtual potentiometry, and molecular modelling. The electrochemically reversible CdII–glycine–OH labile system was best described by a model consisting of M(HL), ML, ML2, ML3, ML(OH) and ML2(OH) (M = CdII, L = gly) with the overall stability constants, as log β, determined to be 10.30 ± 0.05, 4.21 ± 0.03, 7.30 ± 0.05, 9.84 ± 0.04, 8.9 ± 0.1, and 10.75 ± 0.10, respectively. In case of the electrochemically quasi-reversible CdII–sarcosine–OH labile system, only ML, ML2 and ML3 (M = CdII, L = sar) were found and their stability constants, as log β, were determined to be 3.80 ± 0.03, 6.91 ± 0.07, and 8.9 ± 0.4, respectively. Stability constants for the ML complexes, the prime focus of this work, were thus established with an uncertainty smaller than 0.05 log units. The observed departure from electrochemical reversibility for the Cd–sarcosine–OH system was attributed mainly to the decrease in the transfer coefficient . The MM2 force field, supplemented by additional parameters, reproduced the reported crystal structures of diaqua-bis(glycinato-O,N)nickel(II) and fac-tri(glycinato)-nickelate(II) very well. These parameters were used to predict structures of all possible isomers of (i) [Ni(H2O)4(gly)]+ and [Ni(H2O)4(sar)]+; and (ii) [Ni(H2O)3(IDA)] and [Ni(H2O)3(MIDA)] (IDA = iminodiacetic acid, MIDA = N-methyl iminodiacetic acid) by molecular mechanics/simulated annealing methods. The change in strain energy, ΔUstr, that accompanies the substitution of one ligand by another (ML + L′ → ML′ + L), was computed and a strain energy ΔUstr = +0.28 kcal mol−1 for the reaction [Ni(H2O)4(gly)]+ + sar → [Ni(H2O)4(sar)]+ + gly was found. This predicts the monoglycine complex to be marginally more stable. By contrast, for the reaction [Ni(H2O)3IDA] + MIDA → [Ni(H2O)3MIDA] + IDA, ΔUstr = −0.64 kcal mol−1, and the monoMIDA complex is predicted to be more stable. This correlates well with (i) stability constants for Cd–gly and Cd–sar reported here; and (ii) known stability constants of ML complex for glycine, sarcosine, IDA, and MIDA.  相似文献   

9.
Pentacarbonyl(diethylaminocarbyne)chromium tetrafluoroborate, [(CO)5− CrCNEt2]BF4 (I), reacts with PPh3 with substitution of CO and formation of trans-tetracarbonyl(diethylaminocarbyne)triphenylphosphanechromium tetra-fluoroborate, trans-[PPh3(CO)4CrCNEt2]BF4 (III). Substitution of CO by PPh3 in neutral trans-tetracarbonyl(halo)(diethylaminocarbyne)chromium complexes, trans-X(CO)4CrCNEt2 (IVa: X = Br, IVb: X = I), leads in a reversible reaction to the corresponding tricarbonyl complexes, mer-X(PPh3)(CO)3− CrNEt2 (V), PPh3 occupying the cis-position to the carbyne ligand. With PPh3 in large excess both reactions follow a first-order rate law. This as well as the activation parameters (ΔH≠ = 104–113 kJ mol−1, ΔS≠ = 64–71 J mol−1 K−1) indicate a dissociative mechanism.  相似文献   

10.
Reaction of phosphorus ylides Ph3PCHC(O)C6H4NO2 (Y′) and (p-tolyl)3PCHC(O)C6H4Cl (Y″) with HgX2 (X = Cl, Br and I) in equimolar ratios using methanol as solvent leads to binuclear products. The bridge-splitting reaction of binuclear complex [(Y″) · HgI2]2 by DMSO yields the mononuclear complex [(Y″) · HgI2 · DMSO]. This bridge-splitting reaction can be also a method for the synthesis of mononuclear products. C-coordination of ylides and O-coordination of DMSO are demonstrated by single crystal X-ray analyses of binuclear complexes of [(Y′) · HgI2]2 and [(Y″) · HgI2]2 and mononuclear complex of [(Y″) · HgI2 · DMSO]. Characterization of the obtained compounds was also performed by elemental analysis, IR, 1H, 31P, and 13C NMR. Theoretical studies on Hg(II) complexes of Y′ show that the cis-like isomers are about 4–12 kcal/mol less stable than the trans-like structures and the relative energy of cis- and trans-like isomers significantly depends on the size of the bridging halide. These studies on mercury complexes of Y″ show that, formation of mononuclear complexes in DMSO solution in which DMSO acts as a ligand, energetically is more favorable than that of binuclear complexes.  相似文献   

11.
A novel dinuclear complex [Cu2(μ-L)4(HL)2] (1) was isolated from starting 2-pyridone (HL) via a resonance and a tautomeric transformation. Each copper centre is in a square-pyramidal coordination sphere, defined by two oxygen atoms (Cu–O4 1.978(5), Cu–O11 1.964(4) Å) and two nitrogen atoms (Cu–N2 2.003(5), Cu–N3 2.007(5) Å) of four bridging deprotonated pyridin-2-olates and an oxygen atom on the top from a neutral 2-pyridone (Cu–O2 2.227(5) Å), analogous to tetracarboxylate paddle-wheel complexes. Compound 1 was compared with mixed pyridin-2-olato/methanoato analogues [Cu2(μ-HCO2)2(μ-L)2(HL)2] · 2CH3CN (2) and [Cu2(μ-HCO2)2(μ-L)2(HL)2] (2a) (2a is an air stable form obtained from 2 outside mother-liquid). The EPR spectra of air stable 1 and 2a show three signals Hz1, H2 and Hz2, typical for the binuclear systems with spin S = 1, both revealing strong antiferromagnetism 2J = −334 (1) and −324 cm−1 (2a). Interestingly, only for 1 additional H1 signal at 100 mT is noticed (D(1) = 0.293 cm−1 <  = 0.320 cm−1 < D(2a) = 0.347 cm−1). On the other hand, several broad signals in the 100–450 mT region, only in the high temperature spectrum for 2a are observed. These results are in agreement with the magnetic susceptibility analysis.  相似文献   

12.
The solubility and the micelle formation of the chiral cationic surfactant (1R,2S)-(−)-N-dodecyl-N-methylephedrinium bromide (DMEB) in aqueous solution were investigated by conductometry and titration microcalorimetry in the temperature range of 278–328 K. The Krafft temperature of DMEB is TK = 280 K and the solubility of the surfactant at this point is 4.5 mM. The cmc versus T curve passes through a shallow minimum close to room temperature. The micelle formation changes from endothermic to exothermic at this characteristic temperature. The apparent degree of dissociation of the micelles app increases slightly as the temperature is raised. The isosteric enthalpies of micelle formation, ΔHst mic, are close to the calorimetrically measured enthalpies, ΔHmic, provided that the real degree of dissociation, st = 1, is used in the calculations. ΔHmic and the temperature dependence of ΔHmic of DMEB are markedly similar to those of sodium dodecylsulfate and dodecyltrimethylammonium bromide. The micelle formation of DMEB is favored by both enthalpy and entropy at and above room temperature. The enthalpy–entropy compensation results in a slight decrease in the Gibbs free energy on increase of the temperature. Sodium montmorillonite (M) was rendered organophilic by DMEB via ion-exchange to produce the clay/organocomplex DME-M. The swelling properties of the organoclay were investigated by XRD measurements in a variety of organic solvents. The basal spacing of DME-M varied from 1.8 to 3.5 nm, depending on the nature of the solvent. DME-M is a heterogenized ephedrine derivative, which may be regarded as a potential catalyst for enantioselective organic syntheses.  相似文献   

13.
The heats of reaction of tolueneMo(CO)3 with a series of phosphines and phosphites have been measured by solution calorimetry. The order of stability toward formation of fac-(PR3)3Mo(CO)3 in THF solution is: P(OCH3)3s> PMe3 > PnBu3 > PMe2Ph> PEt3 > triphos> P(OPh)3 > PMePh2 > PPh3 > PCl3 and spans a range of 25 kcal/mol reflecting individual bond strength differences up to 8 kcal/mol. The bulky phosphines PCy3 and PtBu3 react with tolueneMo(CO)3 in THF, but 30–40 kcal/mol less heat is evolved in these reactions than with the other phosphines and phosphites. The coordinately unsaturated five-coordinate complexes (PR3)2Mo(CO)3 are proposed as the reaction products. The importance of both steric and electronic factors in the Mo---P bond is discussed.  相似文献   

14.
Cheng S  Gao F  Krummel KI  Garland M 《Talanta》2008,74(5):1132-1140
Two different organometallic ligand substitution reactions were investigated: (1) an achiral reactive system consisting of Rh4(CO)12 + PPh3  Rh4(CO)11PPh3 + CO in n-hexane under argon; and (2) a chiral reactive system consisting of Rh4(CO)12 + (S)-BINAP  Rh4(CO)10BINAP + 2CO in cyclohexane under argon. These two reactions were run at ultra high dilution. In both multi-component reactive systems the concentrations of all the solutes were less than 40 ppm and many solute concentrations were just 1–10 ppm. In situ spectroscopic measurements were carried out using UV–vis (Ultraviolet–visible) spectroscopy and UV–vis CD spectroscopy on the reactive organometallic systems (1) and (2), respectively. The BTEM algorithm was applied to these spectroscopic data sets. The reconstructed UV–vis pure component spectra of Rh4(CO)12, Rh4(CO)11PPh3 and Rh4(CO)10BINAP as well as the reconstructed UV–vis CD pure component spectra of Rh4(CO)10BINAP were successfully obtained from BTEM analyses. All these reconstructed pure component spectra are in good agreement with the experimental reference spectra. The concentration profiles of the present species were obtained by performing a least square fit with mass balance constraints for the reactions (1) and (2). The present results indicate that UV–vis and UV–vis-CD spectroscopies can be successfully combined with an appropriate chemometric technique in order to monitor reactive organometallic systems having UV and Vis chromophores.  相似文献   

15.
Cationic rhodium and iridium complexes of the type [M(COD)(PPh3)2]PF6 (M = Rh, 1a; Ir, 1b) are efficient precatalysts for the hydroformylation of 1-hexene to its corresponding aldehydes (heptanal and 2-methylhexanal), under mild pressures (2–5 bar) and temperatures (60 °C for Rh and 100 °C for Ir) in toluene solution; the linear to branched ratio (l/b) of the aldehydes in the hydroformylation reaction varies slightly (between 3.0 and 3.7 for Rh and close to 2 for Ir). Kinetic and mechanistic studies have been carried out using these cationic complexes as catalyst precursors. For both complexes, the reaction proceeds according to the rate law ri = K1K2K3k4[M][olef][H2][CO]/([CO]2 + K1[H2][CO] + K1K2K3[olef][H2]). Both complexes react rapidly with CO to produce the corresponding tricarbonyl species [M(CO)3(PPh3)2]PF6, M = Rh, 2a; Ir, 2b, and with syn-gas to yield [MH2(CO)2(PPh3)2]PF6, M = Rh, 3a; Ir, 3b, which originate by CO dissociation the species [MH2(CO)(PPh3)2]PF6 entering the corresponding catalytic cycle. All the experimental data are consistent with a general mechanism in which the transfer of the hydride to a coordinated olefin promoted by an entering CO molecule is the rate-determining step of the catalytic cycle.  相似文献   

16.
The electrochemical properties of mer-[RuCl3(dppb)(4-pic)] (dppb = Ph2P(CH2)4PPh2, 4-pic = CH3C5H4N), Rupic, in CHCl3 are governed by the formation of species such as [Ru2Cl5(dppb)2], [Ru2(dppb)2Cl4(4-pic)] and trans-[RuCl2(dppb)(4-pic)2] upon the reduction of “[RuCl2(dppb)]”. The overall behavior depends on whether Rupic is immobilized in cast or Langmuir–Blodgett (LB) films, or incorporated into a carbon paste electrode (CPE). In cyclic voltammograms, one redox process appears for LB/Rupic films and CPE/Rupic, at Epa = 0.35 V, Epc = 0.25 V vs SCE, and Epa = 0.32 V, Epc = 0.24 V vs Ag/AgCl, respectively. This redox process was ascribed to the RuIII/RuII charge transfer. For cast films the redox pair was poorly defined, with Epa = 0.27 V and Epc = 0.20 V. The reason for the difference lies in the phase separation and formation of aggregates onto ITO for the cast film, in contrast to the LB film. With aggregation, the formation of species occurring in solution is impaired for Rupic in cast films. The electrochemical properties for Rupic in LB films and incorporated into CPE allowed the electrocatalytic activity of Rupic to be exploited in sensors for dopamine and ascorbic acid.  相似文献   

17.
The MutT pyrophosphohydrolase from E. coli (129 residues) catalyzes the hydrolysis of nucleoside triphosphates (NTP), including 8-oxo-dGTP, by substitution at Pβ, to yield NMP and pyrophosphate. The product, 8-oxo-dGMP is an unusually tight binding, slowly exchanging inhibitor with a KD=52 nM, (ΔG°=−9.8 kcal/mol) which is 6.1 kcal/mol tighter than the binding of dGMP (ΔG°=−3.7 kcal/mol). The higher affinity for 8-oxo-dGMP results from a more favorable ΔHbinding (−32 kcal/mol) despite an unfavorable −TΔS°binding (+22 kcal/mol). The solution structure of the MutT–Mg2+-8-oxo-dGMP complex shows a narrowed, hydrophobic nucleotide-binding cleft with Asn-119 and Arg-78 among the few polar residues. The N119A, N119D, R78K and R78A single mutations, and the R78K+N119A double mutant all showed largely intact active sites, on the basis of small changes in the kinetic parameters of dGTP hydrolysis and in 1H–15N HSQC spectra. However, the N119A mutation profoundly weakened the active site binding of 8-oxo-dGMP by 4.3 kcal/mol (1650-fold). The N119D mutation also weakened 8-oxo-dGMP binding but only by 2.1 kcal/mol (37-fold), suggesting that Asn-119 functioned both as a hydrogen bond donor to C8=O, and a hydrogen bond acceptor from N7H of 8-oxo-dGMP, while aspartate at position −119 functioned as an acceptor of a single hydrogen bond. Much smaller weakening effects (0.3–0.4 kcal/mol) on the binding of dGMP and dAMP were found, indicating specific hydrogen bonding of Asn-119 to 8-oxo-dGMP. While formation of the wild type MutT–Mg2+-8-oxo-dGMP complex slowed the backbone NH exchange rates of 45 residues distributed throughout the protein, the same complex of the N119A mutant slowed the exchange rates of only 11 residues at or near the active site, indicating an increase in conformational flexibility of the N119A mutant. The R78K and R78A mutations weakened the binding of 8-oxo-dGMP by 1.7 and 1.1 kcal/mol, respectively, indicating a lesser role of Arg-78 than of Asn-119 in the selective binding of 8-oxo-dGMP, likely donating a single hydrogen bond to its C6=O. The R78K+N119A double mutant weakened the binding of 8-oxo-dGMP (KIslope=3.1 mM) by 6.5±0.2 kcal/mol which overlaps, within error with the sum of the effects of the two single mutants (6.0±0.3 kcal/mol). Such additive effects of the two single mutants in the double mutant are most simply explained by the independent functioning of Asn-119 and Arg-78 in the binding of 8-oxo-dGMP. Independent functioning of these two residues in nucleotide binding is consistent with their locations in the MutT–Mg2+-8-oxo-dGMP complex, on opposite sides of the active site cleft, with a distance of 8.4±0.5 Å between their side chain nitrogens.  相似文献   

18.
The enthalpy of formation (ΔHf0), enthalpy of evaporation (ΔHv0) and enthalpy of atomization (ΔHa) of permethylcyclosilazanes (Me2SiNH)n (n = 3, 4) and 1,1,3,3-tetramethyldisilazane (Me2SiH)2NH have been determined. The enthalpies of formation of these compounds were compared with those calculated by the Benson-Buss-Franklin and Tatevskii additive schemes. In higher permethylcyclosilazanes the energy of the endocyclic Si---N bond is 306 ± 2 kJ mol−1 (73 kcal mol−1), that is 12 ± 2 kJ mol−1 (3 kcal mol−1) lower than the energy of the acyclic Si---N bond. The strain energy of the cyclotrisilazane ring is estimated to be 10.5 kJ mol−1 (2.5 kcal mol−1), whereas the energy of the ring Si---N bond is 295 kJ mol−1 (70.5 kcal mol−1).

The thermochemical data for permethylcyclosilazanes were compared with the corresponding values for permethylcyclosiloxanes calculated from the results of previously reported studies.  相似文献   


19.
The reaction of pentacarbonyl(arylmethoxycarbene)tungsten, (CO)5W[C(OCH3(p-C6H4R)] [R = OCH3 (a), CH3 (b), H (c), Br (d), CF3 (e)], with tributylphosphane at low temperatures results in a reversible addition of the phosphane to the carbene carbon atom. The addition—dissoziation equilibrium is not only dependent on the temperature but also to a strong degree on the nature of the substituent R. ΔG, ΔH and the equilibrium constant K increase in the series from R = OCH3 to R = CF3. With the exception of R = OCH3 the substituents b to e form an isentropic class. For all substituents (a to e) a linear dependency from Jaffés σ-constants was observed for ΔH. Good linear correlation for the substituents b to e was also found for log K and σ as well as for log K and the CO-force constants kcis and ktrans.  相似文献   

20.
Four triosmium carbonyl clusters bearing terminal pyrazines, bridging hydroxy and methoxycarbonyl ligands of general formula [Os3(CO)9(μ-OH)(μ-OMeCO)L] (1, L = pyrazine; 2, L = 2-methylpyrazine; 3, L = 2,3-dimethylpyrazine; 4, L = 2,3,5-trimethylpyrazine) were synthesized by the reactions of [Os3(CO)12] with the corresponding pyrazine derivatives and water in the presence of a methanolic solution of Me3NO in moderate yields. Compounds [Os3(CO)9(μ-OH)(μ-OMeCO)L] react with a series of two electron donor ligands, L′ at ambient temperature to give [Os3(CO)9(μ-OH)(μ-OMeCO)L′] (5, L′ = PPh3; 6, L′ = P(OMe)3; 7, L′ = tBuNC; 8, L′ = C5H5N) in good yields by the displacement of the pyrazine ligands. This implies that the pyrazine ligands in 1–4 are relatively labile. Compounds 2, 3, 4, and 8 were characterized by single crystal X-ray diffraction analyses. All the four compounds possess two metal–metal bonds and a non-bonded separation of two osmium atoms defined by Os(1)Os(3), which are simultaneously bridged by OH and MeOCO ligands and a heterocyclic ligand is terminally coordinated to one of the two non-bonded osmium atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号