首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hysteresis phenomena in multi-phase flow in porous media has been recognized by many researchers and widely believed to have significant effects on the flow. In an attempt to account for these effects, a theoretical model for history-dependent relative permeabilities is considered. This model is incorporated into 1-D two-phase nondiffusive flow system and the corresponding flow is predicted. Flow history is observed to have a notable impact on the saturation profile and fluids breakthrough.  相似文献   

2.
The purpose of this paper is to investigate, by flow simulations in a uniform pore-space geometry, how the co and countercurrent steady state relative permeabilities depend on the following parameters: phase saturation, wettability, driving force and viscosity ratio. The main results are as follows: (i) with few exceptions, relative permeabilities are convex functions of saturation; (ii) the cocurrent relative permeabilities increase while the countercurrent ones decrease with the driving force; (iii) with one exception, phase 2 relative permeabilities decrease and phase 1 relative permeabilities increase with the viscosity ratio M=1/2; (iv) the countercurrent relative permeabilities are always less than the cocurrent ones, the difference being partly due to the opposing effect of the viscous coupling, and partly to different levels of capillary forces; (v) the pore-level saturation distribution, and hence the size of the viscous coupling, can be very different between the cocurrent and the countercurrent cases so that it is in general incorrect to estimate the full mobility tensor from cocurrent and countercurrent steady state experiments, as suggested by Bentsen and Manai (1993).(Now at AS Norske Shell, Norway.) e-mail:  相似文献   

3.
Neuweiler  I.  Attinger  S.  Kinzelbach  W.  King  P. 《Transport in Porous Media》2003,51(3):287-314
We derive a large scale mixing parameter for a displacement process of one fluid by another immiscible one in a two-dimensional heterogeneous porous medium. The mixing of the displacing fluid saturation due to the heterogeneities of the permeabilities is captured by a dispersive flux term in the large scale homogeneous flow equation. By making use of the stochastic approach we develop a definition of the dispersion coefficient and apply a Eulerian perturbation theory to determine explicit results to second order in the fluctuations of the total velocity. We apply this method to a uniform flow configuration as well as to a radial one. The dispersion coefficient is found to depend on the mean total velocity and can therefore be time varying. The results are compared to numerical multi-realization calculations. We found that the use of single phase flow stochastics cannot capture all phenomena observed in the numerical simulations.  相似文献   

4.
The stability of hypersonic viscous gas flow in a shock layer in the neighborhood of a flat plate is considered. The stability of the velocity, temperature, density, and pressure profiles calculated on the basis of the complete viscous shock layer equations is investigated within the framework of the linear stability theory with allowance for the shock wave relations. The calculated perturbation growth rates and phase velocities are compared with the experimental data obtained by means of electron-beam fluorescence.  相似文献   

5.
A computer-aided simulator of immiscible displacement in strongly water-wet consolidated porous media that takes into account the effects of the wetting films is developed. The porous medium is modeled as a three-dimensional network of randomly sized unit cells of the constricted-tube type. Precursor wetting films are assumed to advance through the microroughness of the pore walls. Two types of pore wall microroughness are considered. In the first type of microroughness, the film advances quickly, driven by capillary pressure. In the second type, the meniscus moves relatively slowly, driven by local bulk pressure differences. In the latter case, the wetting film often forms a collar that squeezes the thread of oil causing oil disconnection. Each pore is assumed to have either one of the aforementioned microroughness types, or both. The type of microroughness in each pore is assigned randomly. The simulator is used to predict the residual oil saturation as a function of the pertinent parameters (capillary number, viscosity ratio, fraction of pores with each type of wall microroughness). These results are compared with those obtained in the absence of wetting films. It is found that wetting films cause substantial increase of the residual oil saturation. Furthermore, the action of the wetting films causes an increase of the mean volume of the residual oil ganglia.  相似文献   

6.
We investigate a two-dimensional network simulator that model the dynamics of drainage dominated flow where film flow can be neglected. We present a new method for simulating the temporal evolution of the pressure due to capillary and viscous forces in the displacement process. To model the dynamics, we let the local capillary pressure change as if the menisci move in and out of hour-glass shaped tubes. Furthermore, a method has been developed to allow simultaneous flow of two liquids into one tube. The model is suitable to simulate different time dependencies in two-phase drainage displacements. In this paper, we simulate the temporal evolution of the fluid pressures and analyze the time dependence of the front between the two liquids. The front width was found to be consistent with a scaling relation w t h(t/ts). The dynamical exponent, , describing the front width evolution as function of time, was estimated to = 1.0. The results are compared to experimental data of Frette and co-workers.  相似文献   

7.
We study the evolution of the water–oil front for two-phase, immiscible flow in heterogeneous porous media. Our analysis takes into account the viscous coupling between the pressure field and the saturation map. Although most of previously published stochastic homogenization approaches for upscaling two-phase flow in heterogeneous porous media neglect this viscous coupling, we show that it plays a crucial role on the dynamics of the front. In particular, when the mobility ratio is favorable, the viscous coupling induces a transverse flux that stabilizes the water–oil front, which follows a stationary behavior, at least in a statistical sense. Calculations are based on a double perturbation expansion of equations at first order: the local velocity fluctuation is defined as the sum of a viscous term related to perturbations of the saturation map, on one hand, plus the perturbation induced by the heterogeneity of the permeability field with a base-state saturation map, on the other hand. In this first paper, we focus on flows in stratified reservoirs, with stratification parallel to the mean flow. Our results allow to predict the evolution of large Fourier mode of the front, and the emergence of a stationary front, for favorable mobility ratios. Numerical experiments confirm our predictions. Our approach is applied to downscaling. Extension of our theory to isotropic media is presented in the companion paper.  相似文献   

8.
When determining experimentally relative permeability and capillary pressure as a function of saturation, a self-consistent system of macroscopic equations, that includes Leverett's equation for capillary pressure, is required. In this technical note, such a system of equations, together with the conditions under which the equations apply, is formulated. With the aid of this system of equations, it is shown that, at the inlet boundary of a vertically oriented porous medium, static conditions pertain, and that potentials, because of the definition of potential, are equal in magnitude to pressures. Consequently, Leverett's equation is valid at the inlet boundary of the porous medium, provided cocurrent flow, or gravity-driven, countercurrent flow is taking place, and provided the porous medium is homogeneous. Moreover, it is demonstrated that Leverett's equation is valid for flow along the length of a vertically oriented porous medium, provided cocurrent flow, or gravity-driven, countercurrent flow is taking place, and provided the porous medium is homogeneous and there are no hydrodynamic effects. However, Leverett's equation is invalid for horizontal, steady-state, forced, countercurrent flow. When such flow is taking place, it is the sum of the pressures, and not the difference in pressures, which is related to capillary pressure.  相似文献   

9.
We study the evolution of the water–oil front for two-phase, immiscible flow in heterogeneous porous media. Our analysis takes into account the viscous coupling between the pressure field and the saturation map. Although most of previously published stochastic homogenization approaches for upscaling two-phase flow in heterogeneous porous media neglect this viscous coupling, we show that it plays a crucial role in the dynamics of the front. In particular, when the mobility ratio is favorable, it induces a transverse flux that stabilizes the water–oil front, which follows a stationary behavior, at least in a statistical sense. Calculations are based on a double perturbation expansion of equations at first order: the local velocity fluctuation is defined as the sum of a viscous term related to perturbations of the saturation map, on one hand, plus the perturbation induced by the heterogeneity of the permeability field with a base-state saturation map, on the other hand. In this companion paper, we focus on flows in isotropic media. Our results predict the dynamics of the water–oil front for favorable mobility ratios. We show that the statistics of the front reach a stationary limit, as a function of the geostatistics of the permeability field and of the mobility ratio evaluated across the front. Results of numerical experiments and Monte-Carlo analysis confirm our predictions.  相似文献   

10.
Theoretical analysis is presented to quantify the viscous coupling effect in two-phase flow through porous media. The analysis is based on the principle of potential difference equations as well as on the interfacial contact area and partition concept. The analysis shows that viscous coupling effect is negligible throughout the normalized saturation range. The expression, Xϕ 2, was developed for the quantification of the parameter that controls the amount of viscous coupling, where X was theoretically found to have a maximum value of 2.  相似文献   

11.
The balance of viscous, capillary and gravity forces strongly affects two-phase flow through porous media and can therefore influence the choice of appropriate methods for numerical simulation and upscaling. A strict separation of the effects of these various forces is not possible due to the nature of the nonlinear coupling between the various terms in the transport equations. However, approximate prediction of this force balance is often made by calculation of dimensionless quantities such as capillary and gravity numbers. We present an improved method for the numerical analysis of simulations which recognises the changing balance of forces – in both space and time – in a given domain. The classical two-phase transport equations for immiscible incompressible flow are expressed in two forms: (i) the convection–diffusion-gravity (CDG) formulation where convection and diffusion represent viscous and capillary effects, respectively, (ii) the oil pressure formulation where the viscous effects are attributed to the product of mobility difference and the oil pressure gradient. Each formulation provides a different perspective on the balance of forces although the two forms are equivalent. By discretising the different formulations, the effect of each force on the rate of change of water saturation can be calculated for each cell, and this can be analysed visually using a ternary force diagram. The methods have been applied to several simple models, and the results are presented here. When model parameters are varied to determine sensitivity of the estimators for the balance of forces, the CDG formulation agrees qualitatively with what is expected from physical intuition. However, the oil pressure formulation is dominated by the steady-state solution and cannot be used accurately. In addition to providing a physical method of visualising the relative magnitudes of the viscous, gravity and capillary forces, the local force balance may be used to guide our choice of upscaling method.  相似文献   

12.
We investigate a two-dimensional network simulator that models the dynamics of two-phase immiscible bulk flow where film flow can be neglected. We present a method for simulating the detailed dynamical process where the two phases are allowed to break up into bubbles, and bubbles are allowed to merge together. The notions of drainage and imbibition are not adequate to describe this process since there is no clear front between the fluids. In fact, the simulator is constructed so that one can study the behaviour of the system far from inlets and outlets, where the two fluids have been mixed together so much that all initial fronts have broken up. The simulator gives the fractional flow as a function of the saturation of each of the fluids. For the case of two fluids with equal viscosity, we classify flow regimes that are parametrized by the capillary number.  相似文献   

13.
Recently developed transport equations for two-phase flow through porous media usually have a second term that has been included to account properly for interfacial coupling between the two flowing phases. The source and magnitude of such coupling is not well understood. In this study, a partition concept has been introduced into Kalaydjian's transport equations to construct modified transport equations that enable a better understanding of the role of interfacial coupling in two-phase flow through natural porous media. Using these equations, it is demonstrated that, in natural porous media, the physical origin of interfacial coupling is the capillarity of the porous medium, and not interfacial momentum transfer, as is usually assumed. The new equations are also used to show that, under conditions of steady-state flow, the magnitude of mobilities measured in a countercurrent flow experiment is the same as that measured in a cocurrent flow experiment, contrary to what has been reported previously. Moreover, the new equations are used to explicate the mechanism by which a saturation front steepens in an unstabilized displacement, and to show that the rate at which a wetting fluid is imbibed into a porous medium is controlled by the capillary coupling parameter, . Finally, it is argued that the capillary coupling parameter, , is dependent, at least in part, on porosity. Because a clear understanding of the role played by interfacial coupling is important to an improved understanding of two-phase flow through porous media, the new transport equations should prove to be effective tools for the study of such flow.  相似文献   

14.
Effect of Network Topology on Relative Permeability   总被引:1,自引:2,他引:1  
We consider the role of topology on drainage relative permeabilities derived from network models. We describe the topological properties of rock networks derived from a suite of tomographic images of Fontainbleau sandstone (Lindquist et al., 2000, J. Geophys. Res. 105B, 21508). All rock networks display a broad distribution of coordination number and the presence of long-range topological bonds. We show the importance of accurately reproducing sample topology when deriving relative permeability curves from the model networks. Comparisons between the relative permeability curves for the rock networks and those computed on a regular cubic lattice with identical geometric characteristics (pore and throat size distributions) show poor agreement. Relative permeabilities computed on regular lattices and on diluted lattices with a similar average coordination number to the rock networks also display poor agreement. We find that relative permeability curves computed on stochastic networks which honour the full coordination number distribution of the rock networks produce reasonable agreement with the rock networks. We show that random and regular lattices with the same coordination number distribution produce similar relative permeabilities and that the introduction of longer-range topological bonds has only a small effect. We show that relative permeabilities for networks exhibiting pore–throat size correlations and sizes up to the core-scale still exhibit a significant dependence on network topology. The results show the importance of incorporating realistic 3D topologies in network models for predicting multiphase flow properties.  相似文献   

15.
Despite the increase in horizontal well applications, scaling fluid displacement in porous medium with horizontal wells is yet to be fully investigated. Determining the conditions under which horizontal wells may lead to better oil recovery is of great importance to the petroleum industry. In this paper, a numerical sensitivity study was performed for several well configurations. The study is performed in order to reveal the functional relationships between the scaling groups governing the displacement and the performance of immiscible displacements in homogeneous reservoirs produced by horizontal wells. These relationships can be used as a quick prediction tool for the fractional oil recovery for any combinations of the scaling groups, thus eliminating the need for the expensive fine-mesh simulations. In addition, they provide the condition under which a horizontal well configuration may yield better recovery performance. These results have potential applications in modeling immiscible displacements and in the scaling of laboratory displacements to field conditions.  相似文献   

16.
The paper presents a model for two-phase flow, where liquid and gas are treated as one fluid with variable density. A one-component fluid and the diffuse-interface model for two-phase flow are assumed at pore level. The wetting properties of the fluid are described by the Cahn theory. Macroscopic equations are deduced in the framework of the Marle formalism. It is shown that two-phase flow in porous media can be described by the Cahn–Hilliard equation for the mass density. The concept of relative permeability is not needed. For non-neutral wetting, it is shown that a capillary pressure exists but that it is not a function of state. Two numerical illustrations are presented, one of them showing that the model is, at least in a simple steady-state situation, compatible with the generalized two-continuum model.  相似文献   

17.
Recent experimental work has shown that the pore-scale flow mechanism during steady-state two-phase flow in porous media is ganglion dynamics (GD) over a broad and practically significant range of the system parameters. This observation suggests that our conception and theoretical treatment of fractional flow in porous media need careful reconsideration. Here is proposed a mechanistic model of steady-state two-phase flow in those cases where the dominant flow regime is ganglion dynamics. The approach is based on the ganglion population balance equations in combination with a microflow network simulator. The fundamental information on the cooperative flow behavior of the two fluids at the scale of a few hundred pores is expressed through the system factors, which are functions of the system parameters and are calculated using the simulator. These system factors are utilized by the population balance equations to predict the macroscopic behavior of the process. The dependence of the conventional relative permeability coefficients not only on the wetting fluid saturation Swbut also on the capillary number, Ca, the viscosity ratio the wettability (0 a, 0 r), the coalescence factor, Co, as well as the porous medium geometry and topology is explained and predicted on a mechanistic basis. Sample calculations have been performed for steady-state fully developed (SSFD) and steady-state nonfully developed (SSnonFD) flow conditions. The number distributions of the moving and the stranded ganglia, the mean ganglion size, the fraction of the nonwetting fluid in the form of mobile ganglia, the ratio of the conventional relative permeability coefficients and the fractional flows are studied as functions of the system parameters and are correlated with the flow phenomena at pore level and the system factors.  相似文献   

18.
Traditional mathematical models of multiphase flow in porous media use a straightforward extension of Darcys equation. The key element of these models is the appropriate formulation of the relative permeability functions. It is well known that for one-dimensional flow of three immiscible incompressible fluids, when capillarity is neglected, most relative permeability models used today give rise to regions in the saturation space with elliptic behavior (the so-called elliptic regions). We believe that this behavior is not physical, but rather the result of an incomplete mathematical model. In this paper we identify necessary conditions that must be satisfied by the relative permeability functions, so that the system of equations describing three-phase flow is strictly hyperbolic everywhere in the saturation triangle. These conditions seem to be in good agreement with pore-scale physics and experimental data.  相似文献   

19.
We develop a mathematical model for hysteretic two-phase flow (of oil and water) in waterwet porous media. To account for relative permeability hysteresis, an irreversible trapping-coalescence process is described. According to this process, oil ganglia are created (during imbibition) and released (during drainage) at different rates, leading to history-dependent saturations of trapped and connected oil. As a result, the relative permeability to oil, modelled as a unique function of the connected oil saturation, is subject to saturation history. A saturation history is reflected by history parameters, that is by both the saturation state (of connected and trapped oil) at the most recent flow reversal and the most recent water saturation at which the flow was a primary drainage. Disregarding capillary diffusion, the flow is described by a hyperbolic equation with the connected oil saturation as unknown. This equation contains functional relationships which depend on the flow mode (drainage or imbibition) and the history parameters. The solution consists of continuous waves (expansion waves and constant states), shock waves (possibly connecting different modes) and stationary discontinuities (connecting different saturation histories). The entropy condition for travelling waves is generalized to include admissible shock waves which coincide with flow reversals. It turns out that saturation history generally has a strong influence on both the type and the speed of the waves from which the solution is constructed.  相似文献   

20.
Hydrodynamic instability in immiscible porous media flows in the presence of capillarity is investigated here. The analysis and arguments presented here show that the slowdown of instabilities due to capillarity is usually very rapid which makes the flow almost, but not entirely, stable. The profiles of the stable and unstable waves in the far-field are characterized using a novel but very simple approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号