首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王志达 《高分子科学》2017,35(5):641-648
This contribution focuses on the impact of shear flow on size and nanostructure of PS-based amphiphilic block copolymer (BC) micelles by varying the stirring rate and copolymer composition.The results show that the vesicles formed from diblock copolymer (di-BC) of PS-b-PAA remain with vesicular morphology,although the average size decreases,with the increase of stirring rate.However,the multi-compartment micelles (MCMs) formed from tri-block copolymer (tri-BC) of PS-b-P2VP-b-PEO are quite intricate,in which the copolymer first self-assembles into spheres,then to clusters,to large compound micelles (LCMs),and finally back to spheres,as stirring rate increases from 100 r/min to 2200 r/min.Formation mechanism studies manifest that vesicles form simultaneously as water is added to the di-BC solution,termed as direct-assembly,and remain with vesicular structure in the flowing process.While for the PS-b-P2VP-b-PEO copolymer,spherical micelles at initial stage can further assemble into clusters and LCMs,termed as second-assembly,due to the speeding-up-aggregation of the favorable stirring.As a result,an invert V-relationship between tri-BC micelle dimension and stirring rate is observed in contrast to the non-linear decreasing curve of di-BC vesicles.It is by investigating these various amphiphilic BCs that the understanding of shear dependence of size and morphology of micelles is improved from self-assembly to second-assembly process.  相似文献   

2.
We demonstrate a general approach for attaining the bottom morphology of block copolymer(BCP) thin films. In our former measurements on PS-b-PMMA films, surface morphology maps of the BCP films revealed distinct ordering regimes where the cylinders orient predominantly perpendicular or parallel to the interface and an ‘intermediate' regime where these morphologies coexist. However, this earlier work did not explore the bottom morphology of BCP thin films. In this study, we investigated the block copolymer morphology near the solid substrate in the cast block copolymer film having a perpendicular cylinder morphology on the surface.  相似文献   

3.
pH-sensitive wettability of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) self assembled films, exhibiting superoleophobicity under water and hydrophilicity at low pH value, and oleophobicity under water and hydrophobicity at neutral condition, has been realized. The wettability properties resulted from the surface topological and chemical transition, which were confirmed by in situ AFM measurements under water at different pH. At low pH, P4VP chains, which were confined in the hexagonal-packed nanodomains, got protonated into a swollen state, while at high pH, P4VP chains were deprotonated into a collapsed state. The reversible protonation/deprotonation procedure on the molecular scale leads to surface topological and chemical transition, thereby pH-sensitive wettability.  相似文献   

4.
We designed and synthesized a triarm star-shaped rod-rod block copolymer(BCP),(poly{2,5-bis[(4-methoxyphenyl)-oxycarbonyl]styrene}-block-poly(γ-benzyl-L-glutamate))3,(PMPCS-b-PBLG)3. The triarm core with three PMPCS-N3 segments was prepared by copper-mediated atom transfer radical polymerization of 2,5-bis[(4-methoxyphenyl)-oxycarbonyl]styrene initiated by a trifunctional initiator and a subsequent azide reaction. And the PBLG block with alkyne functionality was synthesized through ring-opening polymerization of γ-benzyl-L-glutamate N-carboxyanhydride initiated by propargylamine. Finally, Huisgen's 1,3-dipolar cycloaddition was employed to combine the triarm(PMPCS-N3)3 and PBLG segments. The chemical structure of the BCP was confirmed by 1H-NMR spectroscopy, Fourier-transform infrared spectroscopy, and gel permeation chromatographic analysis. Results from differential scanning calorimetry, polarized light microscopy, one-dimensional and two-dimensional wide-angle X-ray diffraction, and transmission electron microscopy techniques demonstrate that the triarm star-shaped rod-rod BCP self-assembles into a hexagon-in-lamella morphology, with the PMPCS block in the columnar nematic phase and the PBLG block in the hexagonal columnar arrangement packed in bilayers due to the rigid nature of the two blocks and the covalent connections in the star-shaped BCP.  相似文献   

5.
Nano-engineering block copolymer aggregates for drug delivery   总被引:25,自引:0,他引:25  
This review describes the properties of block copolymer micelles which influence their efficiency as drug delivery vehicles for hydrophobic drugs. The key performance related properties we discuss are loading capacity, release kinetics, circulation time, biodistribution, size, size distribution and stability. Each of the properties is discussed in detail with specific attention given to the way in which they may be changed or controlled, the aim being to allow the reader to tailor-make block copolymer micelles for a particular application. In addition, the last section of the review focuses on the morphology of the micelles as another performance related property which, to this point, remains unexplored in this connection.  相似文献   

6.
季生象 《高分子科学》2016,34(6):659-678
Block copolymer lithography is emerging as one of the leading technologies for patterning nanoscale dense features. In almost all potential applications of this technology, control over the orientation of cylindrical and lamellar domains is required for pattern transfer from the block copolymer film. This review highlights the state-of-art development of brushes to modify the substrates to control the assembly behaviors of block copolymers in films. Selected important contributions to the development of self-assembled monolayers, polymer brushes and mats, and chemically patterned brushes are discussed.  相似文献   

7.
嵌段共聚物自组装及其在纳米材料制备中的应用(上)   总被引:6,自引:2,他引:6  
嵌段共聚物分子链中,嵌段间的相互热力学不相容性及化学键相连接性,使体系发生自组装,通过适当的分子及体系设计,嵌段共聚物体系能够自组装形成丰富的周期性有序微结构。本文概要地总结了嵌段共聚物体系主要的三方面自组装物理行为:本体自组装、在选择性溶剂中的缔合,及薄膜自组装,同时,介绍了这三方面的一些新的研究进展。  相似文献   

8.
In this work asymmetric polystyrene-block-polyethylene oxide (PS-PEO) diblock copolymers were blended with high and low molecular polystyrene (PS) homopolymer and spin cast, resulting in the rapid self-assembly of vertically oriented PEO cylinders in a matrix of PS. Due to the kinetically constrained phase separation of the system, increasing addition of homopolymer is shown to reduce the diameter of the PEO domains, even when the homopolymer was of significantly higher molecular weight than the PS block in the PS-PEO diblock copolymer and would be predicted to macro-phase separate from the copolymer. The outcomes of this study provide a novel method that requires the adjustment of a single variable to tune the size of vertically oriented PEO domains between 10 and 100 nm, with potential applications in a number of areas including membrane technologies.  相似文献   

9.
The specific interfacial area (S/V) and interfacial thickness in each microstructure of styrene-isoprene diblock copolymer were estimated by analyzing the deviations from Porod’s law. The thermally induced phase transitions proceeded from lamellae (L) to hexagonally ordered cylinder (HEX), via hexagonally perforated layer (HPL) and gyroid (G). The S/V ratio increased stepwise at the order-order transition (OOT) from L to HEX, via HPL and G. The S/V data can be utilized for OOT determination.  相似文献   

10.
Phenomena associated with the order-disorder transition (ODT) of block copolymers have been studied by optical light microscopy, SAXS, SEM, TEM and DSC. Observations have been made on almost symmetric polystyrene-block-poly(methyl methacrylate) samples of three molecular weights and their mixture. We observed non-equilibrium supermolecular structures several microns in diameter in the bulk of thick PS-b-PMMA films (ca. 100 μm thickness) prepared by vacuum drying of films cast from a non-selective solvent (after a short-term annealing above the Tg). Apparent LDOT (lower disorder-to-order transition) behaviour is observed for samples with non-equilibrium morphology surviving from solution as deduced from SAXS 1/Im vs 1/T and the full width at half-maximum vs 1/T plots.The measurements point to complex behaviour near the ODT, but homogenization of samples upon long-term annealing well above the Tg temperature call into existence common stacks of lamellae observable in SEM images of microphase-separated samples. This verifies the opinion that the observed apparent LDOT behaviour of samples II, III and II + III is associated with the frozen non-equilibrium morphology surviving from solution. This is confirmed by SAXS measurement on a homogenized sample displaying the expected UDOT behaviour. It has been demonstrated that self-assembled structures prepared by vacuum drying of films cast from a non-selective solvent are non-equilibrium structures and their successive ordering is difficult due to a relative narrow temperature interval between Tg and degradation temperature. The conditions under which BCP films are prepared thus have a pronounced effect on the microstructure and microphase ordering process.  相似文献   

11.
The dilute solution property of ethylene-vinyl acetate (EVA) random copolymer in 1,2-dichloroethane/cyclohexane (DCE/CYH) selective solvent mixture has been studied by viscometry, light scattering, differential refractomertry and UV spectrophotometry. It was found that both ethylene- and viny1 acetate sequence associations of EVA random copolymer displayed in both DCE and CYH solvents respectively, especially in DCE. Disassociation appeared when the volume fraction of CYH in the DCE/CYH solvent mixture φc was from 0.6 to 0.8. However, in this region, the extreme values of the intrinsic viscosity [η], Huggins constant k, unperturbed dimension Kθ, refractive index increment dn/dc occurred, and a discontinuity behavior of the preferential adsorption coefficient λ and UV spectra demonstrated. These phenomena were attributed to conformational transition of the EVA molecule in solution, which was caused by DCE and CYH selective solvents, respectively.  相似文献   

12.
The aggregation behavior of a star-like amphiphilic block copolymer (denoted as AP432, which was synthesized via anionic polymerization), in aqueous solutions was investigated by surface tension, steady-state fluorescence, dynamic light scattering (DLS) and transmission electron microscopy (TEM). For comparison, a commercially available linear amphiphilic PEO-PPO-PEO block copolymer, Pluronics L64, which has a similar PEO fraction to AP432, was also studied. It is found that the different molecular structure of AP432 and L64 leads to a significant difference on their behavior both at the air/water interface and in bulk aqueous solutions. The results of surface tension measurements indicate that the surface activity of AP432 is much more pronounced than that of L64. The formation of AP432 and L64 aggregates are identified by DLS, fluorescence and TEM measurement.  相似文献   

13.
Symmetrical poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), PEO-PPO-PEO, triblock copolymers with 80% polyethylene oxide (PEO, the hydrophilic end blocks) and polypropylene oxide (PPO, the hydrophobic middle block) usually remain as molecularly dissolved at ambient temperature even at fairly high-concentrations (2 wt.% or more). However, the micellization is induced at lower concentration/temperature in the presence of salts. The results on salt induced micellization from four such hydrophilic copolymers Pluronic® F38, F68, F88 and F108 obtained from several independent techniques are described. FTIR and fluorescence results provide essentially identical critical micelle temperatures (CMTs) showing marked decrease with increase in PPO molecular weight and in the presence of salt. These copolymers were weakly surface active and did not show a clear break point in surface tension concentration plot typical of surfactants. While addition of salt decreases the cloud point, no significant micelle growth was observed even at temperature close to cloud point (CP). Marked increased in solubilization of an oil dye was observed in presence of KCl. Different methods showed good agreement in temperature/salt-induced micellization of these hydrophilic copolymers.  相似文献   

14.
15.
Control of the size and agglomeration of micellar systems is important for pharmaceutical applications such as drug delivery. Although shape-related transitions in surfactant solutions are studied experimentally, their molecular mechanisms are still not well understood. In this study, we use coarse-grained molecular dynamics simulations to describe micellar assemblies of pentaethylene glycol monododecyl ether (C(12)E(5)) in aqueous solution at different concentrations. The obtained size and aggregation numbers of the aggregates formed are in very good agreement with the available experimental data. Importantly, increase of the concentration leads to a second critical micelle concentration where a transition to rod-like aggregates is observed. This transition is quantified in terms of shape anisotropy, together with a detailed structural analysis of the micelles as a function of aggregation number.  相似文献   

16.
In this work a phase segregated blend system consisting of a block copolymer (BCP) and epoxy matrix with cylindrical morphology is considered. Transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) investigations reveal that long-ranged ordered nanostructures can be obtained under certain preparation conditions. The pre-shearing conditions are the most important factors in order to obtain regular structures.  相似文献   

17.
A novel brush-type amphiphilic copolymer of PSMA-b-PTMSPMA was synthesized via ATRP technique. As-synthesized polymer was characterized by GPC and 1H NMR. It was of interest that the resultant polymer could self-assemble into micelles with different morphologies and sizes in selective solvents by adjusting the copolymer concentrations. These aggregates could be prepared into novel stable organic/inorganic hybrid nanomaterials by the gelation process. The size and structure of these aggregates and the corresponding hybrid nanomaterials were observed by TEM.  相似文献   

18.
The partially sulfonated polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene (SSEBS) and its membranes blended with a low molecular weight of hydrogenated dicyclopentadine (DCPD) as a selective swelling agent to the middle block were prepared for a possible application to DMFC. The characteristic properties such as proton conductivity and methanol permeability were compared with SSEBS and the blend membranes when they have the same ion exchange capacity (IEC). Using small-angle X-ray scattering (SAXS), morphological transition by the selective swelling were observed as water and methanol are absorbed. It was found that the addition of DCPD prohibits the morphology transition and reduces the methanol crossover. By means of selective blending with methanol-hating materials, it was shown that satisfactory membranes being with methanol tolerance for DMFC can be fabricated by controlling the nano-scaled morphology of proton conducting block copolymer membranes.  相似文献   

19.
We followed the self-assembly of high-molecular weight MePEG- b -PCL (poly(methyl ethylene glycol)-block-poly(ε-caprolactone)) diblock and MePEG- b -PBO- b -PCL (poly(methyl ethylene glycol)-block-poly(1,2-butylene oxide)-block-poly(ε-caprolactone)) into micelles using molecular dynamics simulation with a coarse grain (CG) force field based on quantum mechanics (CGq FF). The triblock polymer included a short poly(1,2-butylene oxide) (PBO) at the hydrophilic-hydrophobic interface of these systems. Keeping the hydrophilic length fixed (MePEG45), we considered 250 chains in which the hydrophobic length changed from PCL44 or PBO6- b -PCL43 to PCL62 or PBO9- b -PCL61. The polymers were solvated in explicit water for 2 μs of simulations at 310.15 K. We found that the longer diblock system undergoes a morphological transition from an intermediate rod-like micelle to a prolate-sphere, while the micelle formed from the longer triblock system is a stable rod-like micelle. The two shorter diblock and triblock systems show similar self-assembly processes, both resulting in slightly prolate-spheres. The dynamics of the self-assembly is quantified in terms of chain radius of gyration, shape anisotropy, and hydration of the micelle cores. The final micelle structures are analyzed in terms of the local density components. We conclude that the CG model accurately describes the molecular mechanisms of self-assembly and the equilibrium micellar structures of hydrophilic and hydrophobic chains, including the quantity of solvent trapped inside the micellar core.  相似文献   

20.
聚醚树枝体-聚丙烯酸嵌段共聚物的水溶液自组装行为   总被引:4,自引:0,他引:4  
应用UV-Vis、荧光、光物理探针、动态激光光散射和透射电镜(TEM)方法研究了聚醚树枝体与聚丙烯酸两亲嵌段共聚物(Dendr,PE-PAA)在水溶液中分子自组装行为。实验结果表明通过聚醚树枝体嵌段的疏水作用,易缔合形成聚集体,具有很低(10^-6~10^-7mol·L^-1)的临界缔合浓度(cac)。透过电镜观察到聚集体具有双层膜结构的球状、单室囊泡。临界缔合浓度(cac)以及聚集体的大小对枝状体的代数(Gi)及线性体的聚合度(n)具有明显的依赖关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号