首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The sorption of cadmium from aqueous solutions was evaluated in three Mexican aluminosilicates (two zeolites and one clay). The effects of pH and contact time on the sorption process were examined. Cadmium was analyzed by neutron activation analysis in the exchanged aluminosilicates. The sorption of cadmium by aluminosilicates was the same in the pH range from 4 to 8, considering the standard deviation. Kinetic studies were carried out and showed a rapid sorption of cadmium in the first 5 hours but the equilibrium was reached in about 20 hours. The sorption kinetics of cadmium ions was best described by the second-order Ritchie modified model. The experimental results obtained in different concentrations and at room temperature for both zeolites were fitted with classical isotherms of Freundlich, Langmuir and Freundlich-Langmuir models. The sorption pattern followed the Langmuir-Freundlich model.  相似文献   

2.
The removal of cobalt from an alkaline waste solutions containing sodium was carried out using a radiotracer in a batch method using synthetic calcium hydroxyapatite (HAP). The influence of different parameters such as solution pH, contact time, cobalt concentration, and presence of other ions like sodium on cobalt removal was studied. The sorption process followed pseudo-second-order kinetics with necessary time of around 23–25 h to reach equilibrium and the cobalt uptake was quantitatively evaluated using the Freundlich model. The results indicated that the mechanism of cobalt removal by HAP was mainly due to chemisorption on a heterogeneous surface. In the presence of sodium, the sorption of cobalt on HAP was not affected. The sorption of cobalt on HAP was pH independent in the range from 4 to 8, because of its buffering properties. The adsorption of cobalt on HAP was fast and the percentage of cobalt sorption was >97 % during the first 30–40 min of the contact time.  相似文献   

3.
In this study, a local bentonite from Gaomiaozi county (Inner Mongolia, China) was converted to Na-bentonite and was characterized by FTIR and XRD to determine its chemical constituents and micro-structure. The removal of cobalt from aqueous solutions by Na-bentonite was investigated as a function of contact time, pH, ionic strength, foreign ions and temperature by batch technique under ambient conditions. The results indicated that the sorption of Co(II) was strongly dependent on pH. At low pH, the sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich, and D-R models were used to simulate the sorption isotherms of Co(II) at the temperatures of 293.15, 313.15 and 333.15 K, respectively. The thermodynamic parameters (∆, ∆, ∆) of Co(II) sorption on GMZ bentonite calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on GMZ bentonite was an exothermic and spontaneous process. The Na-bentonite is a suitable material for the preconcentration and solidification of Co(II) from aqueous solutions.  相似文献   

4.
The sorption of Co(II) on Na-attapulgite as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid (FA) and temperature under ambient conditions was studied. The kinetic of Co(II) sorption on Na-attapulgite was described well by pseudo-second-order model. The sorption of Co(II) on Na-attapulgite was strongly dependent on pH and ionic strength. The sorption of Co(II) was mainly dominated by outer-sphere surface complexation and/or ion exchange at low pH, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH values. The presence of FA did not affect Co(II) sorption obviously at pH <7, and a negative effect was observed at pH >7. The Langmuir and Freundlich models were used to simulate the sorption data at different temperatures, and the results indicated that the Langmuir model simulated the data better than the Freundlich isotherm model. The thermodynamic parameters (∆G°, ∆S°, ∆H°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on Na-attapulgite was an endothermic and spontaneous process. The results suggest that the attapulgite sample is a suitable material in the preconcentration and solidification of radiocobalt from large volumes of aqueous solutions.  相似文献   

5.
Mesoporous carbon was synthesized for the removal of a cationic dye malachite green (MG) from aqueous solution. The studies were carried out under various experimental conditions such as contact time, dye concentration, adsorption dose and pH to assess the potentiality of mesoporous carbon for the removal of malachite green dye from wastewater. The sorption equilibrium was reached within 30 min. In order to determine the adsorption capacity, the sorption data were analyzed using linear form of Langmuir and Freundlich equation. Langmuir equation showed higher conformity than Freundlich equation. More than 99% removal of MG was reached at the optimum pH value of 8.5. From kinetic experiments, it was concluded that the sorption process followed the pseudo-first-order kinetic model. This study showed that mesoporous carbon can be recommended as an excellent adsorbent at high pH values.  相似文献   

6.
Herein, the sorption properties of Eu(III) on Na-attapulgite were performed by using batch sorption experiments under different experimental conditions, such as contact time, pH, ionic strength, humic acid and temperatures. The results indicated that the sorption of Eu(III) on Na-attapulgite was strongly dependent on pH and temperature. At low pH values, the sorption of Eu(III) was influenced by ionic strength, whereas the sorption was not affected by ionic strength at high pH values. The sorption of Eu(III) was mainly dominated by ion exchange or outer-sphere surface complexation at low pH values, and by inner-sphere surface complexation or surface precipitation at high pH values. The sorption of Eu(III) onto Na-attapulgite increased with increasing temperature. The Langmuir and Freundlich models were applied to simulate the sorption isotherms, and the results indicated that the Langmuir model simulated the sorption isotherms better than the Freundlich model. The thermodynamic parameters (∆G o, ∆S o, ∆H o) were calculated from the temperature dependent sorption isotherms at 293, 313 and 333 K, respectively, and the results indicated that the uptake of Eu(III) on Na-attapulgite was an endothermic and spontaneous process. The results of high Eu(III) sorption capacity on Na-attapulgite suggest that the attapulgite is a suitable material for the preconcentration and immobilization of Eu(III) ions from large volumes of aqueous solutions.  相似文献   

7.
Herein, hydroxyapatite (HAP) was prepared by aqueous precipitation technique and was characterized by using FT-IR and XRD to determine its chemical functional groups and micro-structure. The removal of cobalt from aqueous solution to HAP was studied by batch technique as a function of various environmental parameters such as contact time, pH, ionic strength, foreign ions, fulvic acid (FA), and temperature under ambient conditions. The results indicated that the sorption of Co(II) on HAP was strongly dependent on pH and ionic strength. The presence of FA enhanced the sorption of Co(II) on HAP at low pH, whereas reduced Co(II) sorption on HAP at high pH. The Langmuir, Freundlich and D-R models were used to simulate the sorption isotherms at three different temperatures of 303.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature dependent sorption isotherms indicated that the sorption process of Co(II) on HAP was spontaneous and endothermic. The sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange at low pH, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH values. The results suggest that the HAP is a suitable material in the preconcentration and solidification of Co(II) from large volumes of aqueous solutions.  相似文献   

8.
In this work, Na-montmorillonite was used as a novel adsorbent for the sorption of Ni(II) from aqueous solutions. The sorption and desorption of Ni(II) on Na-montmorillonite was investigated as the function of pH, ionic strength, Ni(II) concentrations and temperature. The results indicated that the sorption of Ni(II) on Na-montmorillonite was strongly dependent on pH, ionic strength and temperature. The sorption of Ni(II) increases slowly from 22.1 to 51.4% at pH range 2–6.5, abruptly at pH 6.5–9, and at last maintains high level with increasing pH at pH > 9 in 0.1 mol/L NaNO3 solutions. The Ni(II) kinetic sorption on Na-montmorillonite was fitted by the pseudo-second-order model better than by the pseudo-first-order model and the experimental data implies that Ni(II) sorption on montmorillonite were mainly controlled by the film diffusion mechanism. The Langmuir, Freundlich and D–R models were used to simulate the sorption data at three different temperatures (298.15, 318.15 and 338.15 K) and the results indicated that Langmuir model simulates the experimental data better than Freundlich and D–R models. The sorption–desorption isotherm of Ni(II) on montmorillonite suggested that the sorption is irreversible. The irreversible sorption of Ni(II) on montmorillonite indicates that montmorillonite can be used to pre-concentration and solidification of Ni(II) from large volumes of solution and to storage Ni(II) ions stably.  相似文献   

9.
采用质量滴定法和静态法分别研究了ZrP2O7的零电荷点(pHPZC)和铀酰离子在ZrP2O7上的吸附及解吸行为.铀酰离子在ZrP2O7上的吸附受体系pH、固液比、电解质种类及富里酸(FA)强烈影响,离子强度对铀酰离子在ZrP2O7上吸附的影响较小;随着固液比(m/V)和pH增大,吸附边界向左偏移;磷酸根与硫酸根对吸附有相反的影响;在低pH下,富里酸(FA)促进铀酰离子在ZrP2O7上吸附;柠檬酸根对吸附有非常大的影响;温度升高有利于吸附.采用Langmuir和Freundlich模型对吸附等温线进行拟合研究,表明Freundlich模型可以更好地拟合铀酰离子在ZrP2O7上的吸附.通过对热力学数据如(△H0,△S0和△G0)的计算可知吸附过程是自发和吸热过程.铀酰离子在ZrP2O7上吸附为不可逆吸附.  相似文献   

10.
MX-80 bentonite was detected using acid-based titration, XRD and FTIR in detail. The sorption behavior of 63Ni(Ⅱ) from aqueous solution to MX-80 bentonite was investigated as a function of solid content, ionic strength and pH by using batch technique. The experimental data of 63Ni(Ⅱ) sorption on MX-80 bentonite was obtained using the diffuse layer model (DLM) with the aid of FITEQL 3.1 program. The results indicated that the sorption of 63Ni(Ⅱ) on MX-80 bentonite was mainly dominated by surface complexation...  相似文献   

11.
Batch sorption experiments were performed to remove Eu(III) ions from aqueous solutions by using attapulgite under ambient conditions. Different experimental conditions, such as contact time, solid content, foreign ions, pH, ionic strength, fulvic acid and temperature, have been investigated to study their effect on the sorption property. The results indicated that the sorption of Eu(III) onto attapulgite was strongly dependent on pH, ionic strength and temperature. The sorption increased from about 8.9 to 90% at pH ranging from 2 to 6 in 0.01 mol/L NaNO3 solution. The Eu(III) kinetic sorption on attapulgite was fitted by the pseudo-second-order model better than by the pseudo-first-order model. The sorption of Eu(III) onto attapulgite increased with increasing temperature and decreasing ionic strength. The Langmuir and Freundlich models were used to simulate the sorption isotherms, and the results indicated that the Freundlich model simulated the data better than the Langmuir model. The thermodynamic parameters (∆G o, ∆S o, ∆H o) were determined from the temperature dependent isotherms at 298.15, 318.15 and 338.15 K, and the results indicated that the sorption reaction was an endothermic and spontaneous process. The results suggest that the attapulgite is a suitable material as an adsorbent for preconcentration and immobilization of Eu(III) from aqueous solutions.  相似文献   

12.
The sorption of Co(II) on colloidal hematite was studied as a function of pH, ionic strength, and Co(II) concentration. Two different techniques were used, yielding two different sets of information: (i) potentiometric titrations that provide information on the number of protons released as a function of pH owing to the sorption of Co(II) and (ii) measurement of the amount of cobalt sorbed on the surface as a function of pH using a radioactive tracer, (60)Co. At low Co(II) concentrations (10(-8) M), the sorption was found to be independent of ionic strength but there seems to be a weak ionic strength dependence at higher Co(II) concentrations (10(-4) M). The adsorption edge moved to higher pH with increasing Co(II) concentration. For the high Co(II) concentration, the number of protons released per cobalt sorbed increased from zero to approximately 1.5. The basic charging properties of hematite were modeled with four different surface complexation models. The 1-pK Basic Stern Model (BSM), with binding of electrolyte ions to the Stern plane, seems to be the most reasonable model if the ambition is to describe experimental data at different ionic strengths. The sorption of cobalt was modeled with the 1-pK BSM. By introducing a low concentration of high affinity surface sites for cobalt sorption it was possible to model the sorption in very wide cobalt concentrations, ranging from 10(-8) M to 10(-4) M. Copyright 2000 Academic Press.  相似文献   

13.
Sorption of thorium (IV) on goethite was investigated as a function of contact time, pH, ionic strength, anions, solid-to-liquid ratio (m/V) and Th(IV) concentration using batch technique. The results showed that the sorption of Th(IV) was strong pH-dependence, and increased from ~10 to ~100% over the pH range of 2.0–4.0, and then kept a constant level in the higher pH range. The sorption of Th(IV) increased with increasing m/V and independent of ionic strength. It was clear that phosphate and FA significantly enhanced Th(IV) sorption on goethite. The sorption and desorption isotherms were investigated at pH 2.90 ± 0.05 and analyzed with Freundlich and Langmuir models, respectively. Compared to Langmuir model, Freundlich model could fit the experimental data better, according to the high relative coefficients.  相似文献   

14.
In this study, natural halloysite nanotubes (HNTs) were applied to remove radiocobalt from wastewaters under various environmental parameters such as contact time, pH, ionic strength, foreign ions and temperature by using batch technique. The results indicated that the sorption of Co(II) on HNTs was dependent on ionic strength at pH < 8.5 and independent of ionic strength at pH > 8.5. Langmuir and Freundlich models were applied to simulate the sorption isotherms of Co(II) at three different temperatures of 293, 313 and 333 K. Langmuir model fitted the sorption isotherms of Co(II) on HNTs better than Freundlich model. The thermodynamic parameters (ΔG 0, ΔS 0 and ΔH 0) calculated from the temperature-dependent sorption isotherms manifested that the sorption of Co(II) on HNTs was an endothermic and spontaneous process. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH, whereas inner-sphere surface complexation or precipitation was the main sorption mechanism at high pH. The experimental results show that HNTs have good potentialities for cost-effective disposal of cobalt-bearing wastewaters.  相似文献   

15.
The efficacy of onion skins, both unmodified and chemically modified with thioglycolic acid, was investigated as alternative low-cost adsorbents for the sequestration of aqueous lead(II) ions from aqueous solution. The adsorbents were characterised using Fourier transform infrared spectroscopy and scanning electron microscopy – energy dispersive X-ray spectroscopy. Adsorption experiments were performed using batch sorption processes. The effects of contact time, pH, initial Pb(II) concentration, adsorbent dose, and temperature were investigated. Optimum sorption conditions were found at pH 4 and a 150?min equilibrium time for the modified onion skin and unmodified onion skin. The Langmuir, Freundlich, Dubinin-Radushkevich and Temkin models were used to characterize the equilibrium experimental results. The equilibrium process was best described by the Freundlich isotherm. The maximum adsorption capacities of 4.878 and 6.173?mg/g were obtained for modified and unmodified adsorbents, respectively, using the Langmuir model. Kinetic studies indicated that the sorption of Pb(II) ions followed a pseudo-second-order model. Thermodynamic parameters such as standard enthalpy change (ΔH°), entropy change (ΔS°), and free energy change (ΔG°) were evaluated from the sorption experimental measurements. The results showed that the sorption process of Pb(II) ions on unmodified and modified onion skins was feasible and exothermic under the conditions used in this study. The sorption process followed the mechanism of physisorption.  相似文献   

16.
The mesoporous silicas (MCM-41 and MCM-48) are synthesized by hydrothermal method, which are characterized by XRD and BET techniques. The application of mesoporous silicas for the sorption of U(VI) from aqueous solution are studied by using batch technique under ambient condition. The effects of contact time, solid-to-liquid ratio (m/V), solution pH, ionic strength and temperature are determined, and the results indicate that the sorption of U(VI) to MCM-41 or MCM-48 are strongly dependent on pH values but independent of ionic strength. Compared with Langmuir model, the sorption isotherms can be simulated by Freundlich model well according to the high relative coefficients. The parameters for Langmuir and Freundlich sorption isotherms are calculated from the temperature at 298, 318 and 338 K, respectively, and the results suggest that the sorption of U(VI) on MCM-41 or MCM-48 is a spontaneous and exothermic process. In contrast to its sorption capacity for U(VI), MCM-48 is a suitable material for the preconcentration of U(VI) from large volumes of aqueous solutions.  相似文献   

17.
Attapulgite has been applied in the sorption of metal and radionuclide ions since its discovery. Herein, radionuclide Am(III) sorption onto attapulgite was carried out at 25 °C in 0.01 mol/L NaNO3 solutions. Effects of contact time, Am(III) initial concentration, pH, humic acid and temperature on Am(III) sorption onto attapulgite were investigated. The sorption of Am(III) increases with increasing contact time and reaches a maximum value within 24 h at different Am(III) initial concentration. The fast sorption velocity indicates that strong chemical sorption or strong surface complexation contributes to the sorption of Am(III) onto attapulgite under the experimental conditions. The experimental data can be described well by the pseudo-second-order rate model. The sorption of Am(III) onto attapulgite is strongly dependent on pH values and surface complexation is the main sorption mechanism. The presence of HA enhances the sorption of Am(III) onto attapulgite at pH < 8.5, whereas, at pH > 8.5, little effect of HA on Am(III) sorption is observed. The Langmuir, Freundlich and D-R models were used to simulate the sorption data at different pH values and the results indicated that Langmuir model simulates the experimental data better than Freundlich and D-R models. The thermodynamic parameters indicates that the sorption of Am(III) onto attapulgite is an endothermic and spontaneous process. The results suggest that the attapulgite is a suitable material as an adsorbent for preconcentration and immobilization of Am(III) from aqueous solutions.  相似文献   

18.
Experiments on sorption of cobalt onto polyethylene foil from buffered borate solutions are reported in this paper. Sorption isotherms and sorption kinetics of cobalt as a function of pH and the effect of borate species on cobalt sorption were investigated. The results show that the extent of cobalt sorption is lower in borate buffer than in Na ClO4 solution. It is found that the adsorption isotherms obtained are dependent on the pH of the solution. Possible reasons of the influence of pH on the sorption isotherms are discussed.  相似文献   

19.
The sorption of cesium and cobalt on kaolinite and montmorillonite were followed by radiotracer method. The sorption of cesium can be described by a Freundlich isotherm. Cobalt sorption on clays equilibrated in cesium chloride solutions significantly differs for kaolinite and montmorillonite due to their differences in sites available for cation sorption and changes in solution chemistry.Heterogeneous exchange of cesium ions between clay and the surrounding electrolyte was performed in order to obtain information about clay/electrolyte systems equilibration. An interplay of different processes included in the attainment of true chemical equilibria of clay/electrolyte systems are responsible for the change of clay surface properties and total exchange capacity.  相似文献   

20.
We have performed a large number of batch sorption experiments of uranyl onto SiO2 and examined the effects of nitrate or ionic strength, phosphate, fulvic acid(FA), phthalic acid (PH), salicylic acid (SA), and catechol (CA) on the uranyl sorption onto SiO2. Three sorption edges and three sorption isotherms at ionic strengths 0.05, 0.1, and 0.5 mol/L KNO3 were used to investigate the effect of ionic strength or nitrate on the sorption and the Langmuir, Freundlich, and Dubinin-Radushkevich models are used to simulate the sorption isotherms, respectively. Five sorption edges in the presence of phosphate, FA, PH, SA, and CA were compared with that in the absence of complexing ligand. The results suggest that the effect of complexation of uranyl with nitrate on the uranyl sorption can be negligible and the sorption can be described Freundlich and D-R model very well. The positive effect of phosphate on the uranyl sorption was found, though the extent of effect was decreased with increasing pH. The positive effect and the negative effect of FA on the uranyl sorption were found at low pH and high pH ranges, respectively. The sorption edge of uranyl sorption remained unaffected in the presence of PH in the pH 2–10. In the presence of SA, the no effect and the negative effect on the uranyl sorption were, respectively, found at low pH and high pH ranges. The negative effect of CA on the uranyl sorption was found in the pH 2–10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号