首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of estimating bounds for the econometric likelihood function using balanced random interval arithmetic is experimentally investigated. The experiments on the likelihood function with data from housing starts have proved the assumption that distributions of centres and radii of evaluated balanced random intervals are normal. Balanced random interval arithmetic can therefore be used to estimate bounds for this function and global optimization algorithms based on this arithmetic are applicable to optimize it. The interval branch and bound algorithms with bounds calculated using standard and balanced random interval arithmetic were used to optimize the likelihood function. Results of the experiments show that when reliability is essential the algorithm with standard interval arithmetic should be used, but when speed of optimization is more important, the algorithm with balanced random interval arithmetic should be used which in this case finishes faster and provides good, although not always optimal, values.  相似文献   

2.
A deterministic global optimization method is developed for a class of discontinuous functions. McCormick’s method to obtain relaxations of nonconvex functions is extended to discontinuous factorable functions by representing a discontinuity with a step function. The properties of the relaxations are analyzed in detail; in particular, convergence of the relaxations to the function is established given some assumptions on the bounds derived from interval arithmetic. The obtained convex relaxations are used in a branch-and-bound scheme to formulate lower bounding problems. Furthermore, convergence of the branch-and-bound algorithm for discontinuous functions is analyzed and assumptions are derived to guarantee convergence. A key advantage of the proposed method over reformulating the discontinuous problem as a MINLP or MPEC is avoiding the increase in problem size that slows global optimization. Several numerical examples for the global optimization of functions with discontinuities are presented, including ones taken from process design and equipment sizing as well as discrete-time hybrid systems.  相似文献   

3.
The convex octagon with unit diameter and maximum perimeter is determined. This answers an open question dating from 1922. The proof uses geometric reasoning and an interval arithmetic based global optimization algorithm to solve a series of non-linear and non-convex programs involving trigonometric functions.  相似文献   

4.
This paper deals with two different optimization techniques to solve the bound-constrained nonlinear optimization problems based on division criteria of a prescribed search region, finite interval arithmetic and interval ranking in the context of a decision maker’s point of view. In the proposed techniques, two different division criteria are introduced where the accepted region is divided into several distinct subregions and in each subregion, the objective function is computed in the form of an interval using interval arithmetic and the subregion containing the best objective value is found by interval ranking. The process is continued until the interval width for each variable in the accepted subregion is negligible. In this way, the global optimal or close to global optimal values of decision variables and the objective function can easily be obtained in the form of an interval with negligible widths. Both the techniques are applied on several benchmark functions and are compared with the existing analytical and heuristic methods.  相似文献   

5.

In this paper, we design a Branch and Bound algorithm based on interval arithmetic to address nonconvex robust optimization problems. This algorithm provides the exact global solution of such difficult problems arising in many real life applications. A code was developed in MatLab and was used to solve some robust nonconvex problems with few variables. This first numerical study shows the interest of this approach providing the global solution of such difficult robust nonconvex optimization problems.

  相似文献   

6.
This paper introduces an algorithm for univariate optimization using linear lower bounding functions (LLBF's). An LLBF over an interval is a linear function which lies below the given function over an interval and matches the given function at one end point of the interval. We first present an algorithm using LLBF's for finding the nearest root of a function in a search direction. When the root-finding method is applied to the derivative of an objective function, it is an optimization algorithm which guarantees to locate the nearest extremum along a search direction. For univariate optimization, we show that this approach is a Newton-type method, which is globally convergent with superlinear convergence rate. The applications of this algorithm to global optimization and other optimization problems are also discussed.  相似文献   

7.
The performance of interval analysis branch-and-bound global optimization algorithms strongly depends on the efficiency of selection, bounding, elimination, division, and termination rules used in their implementation. All the information obtained during the search process has to be taken into account in order to increase algorithm efficiency, mainly when this information can be obtained and elaborated without additional cost (in comparison with traditional approaches). In this paper a new way to calculate interval analysis support functions for multiextremal univariate functions is presented. The new support functions are based on obtaining the same kind of information used in interval analysis global optimization algorithms. The new support functions enable us to develop more powerful bounding, selection, and rejection criteria and, as a consequence, to significantly accelerate the search. Numerical comparisons made on a wide set of multiextremal test functions have shown that on average the new algorithm works almost two times faster than a traditional interval analysis global optimization method.  相似文献   

8.
A domain partitioning algorithm for minimizing or maximizing a Lipschitz continuous function is enhanced to yield two new, more efficient algorithms. The use of interval arithmetic in the case of rational functions and the estimates of Lipschitz constants valid in subsets of the domain in the case of others and the addition of local optimization have resulted in an algorithm which, in tests on standard functions, performs well.  相似文献   

9.
In bound constrained global optimization problems, partitioning methods utilizing Interval Arithmetic are powerful techniques that produce reliable results. Subdivision direction selection is a major component of partitioning algorithms and it plays an important role in convergence speed. Here, we propose a new subdivision direction selection scheme that uses symbolic computing in interpreting interval arithmetic operations. We call this approach symbolic interval inference approach (SIIA). SIIA targets the reduction of interval bounds of pending boxes directly by identifying the major impact variables and re-partitioning them in the next iteration. This approach speeds up the interval partitioning algorithm (IPA) because it targets the pending status of sibling boxes produced. The proposed SIIA enables multi-section of two major impact variables at a time. The efficiency of SIIA is illustrated on well-known bound constrained test functions and compared with established subdivision direction selection methods from the literature.  相似文献   

10.
本文利用区间工具及目标函数的特殊导数,给出一个非光滑总体优化的区间算法,该算法提供了目标函数总体极小值及总体极小点的取值界限(在给定的精度范围内)。我们也将算法推广到并行计算中。数值实验表明本文方法是可靠和有效的。  相似文献   

11.
This paper analyzes and evaluates an efficient n-dimensional global optimization algorithm. It is a natural n-dimensional extension of the algorithm of Casado et al. [1]. This algorithm takes advantage of all available information to estimate better bounds of the function. Numerical comparison made on a wide set of multiextremal test functions has shown that on average the new algorithm works faster than a traditional interval analysis global optimization method.  相似文献   

12.
Usually, interval global optimization algorithms use local search methods to obtain a good upper (lower) bound of the solution. These local methods are based on point evaluations. This paper investigates a new local search method based on interval analysis information and on a new selection criterion to direct the search. When this new method is used alone, the guarantee to obtain a global solution is lost. To maintain this guarantee, the new local search method can be incorporated to a standard interval GO algorithm, not only to find a good upper bound of the solution, but also to simultaneously carry out part of the work of the interval B&B algorithm. Moreover, the new method permits improvement of the guaranteed upper bound of the solution with the memory requirements established by the user. Thus, the user can avoid the possible memory problems arising in interval GO algorithms, mainly when derivative information is not used. The chance of reaching the global solution with this algorithm may depend on the established memory limitations. The algorithm has been evaluated numerically using a wide set of test functions which includes easy and hard problems. The numerical results show that it is possible to obtain accurate solutions for all the easy functions and also for the investigated hard problems.  相似文献   

13.
Inclusion functions combined with special subdivision strategies are an effective means of solving the global unconstrained optimization problem. Although these techniques were determined and numerically tested about ten years ago, they are nearly unknown and scarcely used. In order to make the role of inclusion functions and subdivision strategies more widespread and transparent we will discuss a related simplified basic algorithm. It computes approximations of the global minimum and, at the same time, bounds the absolute approximation error. We will show that the algorithm works and converges under more general assumptions than it has been known hitherto, that is, only appropriate inclusion functions are expected to exist. The number of minimal points (finite or infinite) is not of importance. Lipschitz conditions or continuity are not assumed. As shown in the Appendix the required inclusion functions can be constructed and programmed without difficulty in a natural way using interval analysis.  相似文献   

14.
An iteration method for roots of algebraic functions with roots of multiplicity greater than one is established using tools and techniques from interval arithmetic. The method is based on an interval iteration functions for multiple roots and it retains the convergence order of the underlying iteration method while preserving global convergence over an initial interval. A number of simple examples are provided to show that the method is feasible and that it produces reasonable results.  相似文献   

15.
This work presents a new scheme to obtain the prior distribution parameters in the framework of Rufo et al. (Comput Stat 21:621–637, 2006). Firstly, an analytical expression of the proposed Kullback–Leibler divergence is derived for each distribution in the considered family. Therefore, no previous simulation technique is needed to estimate integrals and thus, the error related to this procedure is avoided. Secondly, a global optimization algorithm based on interval arithmetic is applied to obtain the prior parameters from the derived expression. The main advantage by using this approach is that all solutions are found and rightly bounded. Finally, an application comparing this strategy with the previous one illustrates the proposal.  相似文献   

16.
An interval algorithm for constrained global optimization   总被引:7,自引:0,他引:7  
An interval algorithm for bounding the solutions of a constrained global optimization problem is described. The problem functions are assumed only to be continuous. It is shown how the computational cost of bounding a set which satisfies equality constraints can often be reduced if the equality constraint functions are assumed to be continuously differentiable. Numerical results are presented.  相似文献   

17.
In order to solve the constrained global optimization problem,we use penalty functions not only on constraints but also on objective function. Then within the framework of interval analysis,an interval Branch-and-Bound algorithm is given,which does not need to solve a sequence of unconstrained problems. Global convergence is proved. Numerical examples show that this algorithm is efficient.  相似文献   

18.
This paper investigates the properties of the inclusion functions on subintervals while a Branch-and-Bound algorithm is solving global optimization problems. It has been found that the relative place of the global minimum value within the inclusion interval of the inclusion function of the objective function at the actual interval mostly indicates whether the given interval is close to minimizer point. This information is used in a heuristic interval rejection rule that can save a big amount of computation. Illustrative examples are discussed and a numerical study completes the investigation.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

19.
Civil engineering is a field – as are many other engineering sciences – where most of the methods used for solving optimization problems are based on experience and experiments, and models using local information, but drawn from global models. The present work outlines an interesting class of problems from this field, and initiates some possible ways to solve those problems utilizing the wide tool capabilities of interval arithmetic for error handling and interval branch-and-bound algorithms to solve the original or modified industrial models automating civil engineers' work. The investigations are in the first state but are promising both in a theoretical and in a practical sense.  相似文献   

20.
A global optimization method, QBB, for twice-differentiable NLPs (Non-Linear Programming) is developed to operate within a branch-and-bound framework and require the construction of a relaxed convex problem on the basis of the quadratic lower bounding functions for the generic nonconvex structures. Within an exhaustive simplicial division of the constrained region, the rigorous quadratic underestimation function is constructed for the generic nonconvex function structure by virtue of the maximal eigenvalue analysis of the interval Hessian matrix. Each valid lower bound of the NLP problem with the division progress is computed by the convex programming of the relaxed optimization problem obtained by preserving the convex or linear terms, replacing the concave term with linear convex envelope, underestimating the special terms and the generic terms by using their customized tight convex lower bounding functions or the valid quadratic lower bounding functions, respectively. The standard convergence properties of the QBB algorithm for nonconvex global optimization problems are guaranteed. The preliminary computation studies are presented in order to evaluate the algorithmic efficiency of the proposed QBB approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号