首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
掺铒GaN薄膜光致发光的研究   总被引:3,自引:1,他引:2  
采用傅立叶变换红外光谱(FT-IR)研究了掺铒GaN薄膜光致发光特性,光致发光谱(PL)的测量结果表明:选用退火时间长的电阻加热退火护退火,有利于薄膜中晶格损伤的恢复,MOCVD,MBF两种方法制备的GaN薄膜,注入铒,退火后的PL谱形状基本一样,薄膜中O,C的含量越大,可能导致1539nm处的PL强度越强,不同衬底对掺铒GaN薄膜的红外光致发光影响很大,在Si衬底上外延生长的GaN样品峰值在1539nm处的PL积分强度只有Al2O3(0001)衬底上外延生长GaN样品的30%,MBE生长的GaN/Al2O3样品,注入铒,退火后,当测量温度从15K变化到300K时,样品发光的温度猝灭是30%。  相似文献   

2.
采用溶胶-凝胶法(Sol-Gel)和旋涂法制备了未掺杂的ZnSnO3薄膜和掺入不同物质的量的Sb的ZnSnO3薄膜。采用X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、X射线光电子能谱(XPS)、霍尔效应仪(Hall)以及紫外-可见光(UV-Vis)等表征了热处理后薄膜的晶相、微观形貌、晶格缺陷、电学性能以及紫外-可见光透过率。结果表明:所有薄膜都是ZnSnO3结构;与未掺Sb的ZnSnO3薄膜相比,掺入Sb后的ZnSnO3薄膜的电阻率都有不同程度的降低,其中掺入8mol%Sb的薄膜具有最低的电阻率0.96Ω·cm;缺陷研究表明:Sb的掺入使得晶格中的间隙锌离子含量增加,这有利于薄膜电阻率的降低;薄膜的紫外-可见光(UV-Vis)表明:在波长大于475nm的可见光范围内,掺入Sb的ZnSnO3薄膜的可见光透过率都在80%以上。  相似文献   

3.
采用磁控溅射法在铜箔集流体上沉积了具有“三明治”结构的Si/Al/Si三层薄膜. 高分辨率透射电镜(HRTEM)和选区电子衍射(SAED)分析结果表明, 该薄膜为非晶态. 扫描电镜(SEM)和能量散射X射线能谱(EDS)结果表明, 该薄膜总厚度约为4.0 μm, 循环100周后体积膨胀率为225%. 在1.5~0.005 V(vs. Li+/Li)和0.1 mA/cm2条件下, 该薄膜电极前5周衰减较快, 而后趋于平缓. 首次放锂量为0.88 mA·h/cm2, 循环5周后, 放锂量为0.71 mA·h/cm2, 100周后的放锂量仍能保持在0.61 mA·h/cm2. 研究结果表明, Al的加入有效地抑制了Si膜的体积膨胀, 使之具有良好的循环寿命. 交流阻抗结果表明, 随着循环次数的增加, 极化电阻首先从46.9 Ω·cm2(第1周)降低到36.2 Ω·cm2(第50周), 而后又升高到47.3 Ω·cm2(第100周). Al的加入提高了Si膜的导电性, 有效地降低了其极化电阻, 改善了Si膜的电压滞后现象.  相似文献   

4.
采用脉冲激光沉积(PLD)法在Si(111)衬底上制备了Eu3+,Li+共掺杂的ZnO薄膜,分别在450,500,550和600℃条件下进行退火,退火气氛为真空。利用X射线衍射(XRD)仪和荧光分光光度计研究了退火温度对薄膜结构和光致发光(PL)的影响。研究结果表明,Eu3+,Li+共掺杂的ZnO薄膜具有c轴择优取向,Eu3+,Li+没有单独形成结晶的氧化物,均以离子形式掺入ZnO晶格中。PL谱中有较宽的ZnO基质缺陷发光,ZnO基质与稀土Eu3+之间存在能量传递,但没有有效的能量传递。随着退火温度的增加,薄膜发光先增强后减弱,退火温度为550℃时发光最强。当用395 nm的激发光激发样品时,仅观察到稀土Eu3+在594 nm附近的特征发光峰,但发光强度随退火温度变化不明显。  相似文献   

5.
采用化学溶液分解法(CSD)在p—Si(111)衬底上制备了(Bi0.9Nd0.1)2Ti2o7薄膜。用X射线衍射技术分析了薄膜的结构和结晶性,结果显示,在600℃退火10min得到了结晶性较好、表面致密的多晶薄膜;用原子力显微镜描述了薄膜的表面形貌,与在XRD中观察到的择优取向是一致的;同时还研究了薄膜的电学性能。结果表明,在0~6V范围内,薄膜的漏电流小于1.53×10^10A;在室温100kHz下,其介电常数为166,介电损耗因子为0.227,显示出薄膜具有较好的绝缘性和介电性能。  相似文献   

6.
通过低温水热法成功地将ZnO纳米棒阵列定向生长在了介孔锐钛矿TiO2纳米晶薄膜上,并主要利用X射线衍射、场发射扫描电子显微镜和光致发光光谱等对其进行了表征。所制备的纳米棒具有六边形的端面,纳米棒的尺寸及端面边长分布范围窄,并且沿c轴方向(002)表现出了明显的择优化生长。此外,相比于玻璃基底或TiO2纳米颗粒薄膜,生长在介孔TiO2薄膜上的ZnO纳米棒阵列表现出了较好的取向生长,表明基底的表面结构和组成对ZnO纳米棒阵列的生长有显著的影响。根据基底有序的多孔结构,讨论了纳米棒阵列可能的生长机理。所得到的ZnO纳米棒阵列在室温下分别表现出了以370 nm为中心的强近紫外光和以530 nm为中心的弱绿光两条荧光谱带。  相似文献   

7.
研究了二叔丁基羟胺(DTBHA),二叔丁基氮氧自由基(DTBNO·),2,2,6,6-四甲基-4-羟基哌啶羟胺(TMHPHA)和2,2,6,6-四甲基-4-羟基哌啶-1-氧自由基(TMHPO·)对过氧化苯甲酰(BPO)60℃引发的苯乙烯(M1)-丙烯腈(M2)共聚合的阻聚行为.结果表明,这些阻聚剂对St-AN共聚均表现良好的阻聚行为,其中氮氧自由基优于相应羟胺.同时观察到St—AN竞聚率的改变,羟胺使r1有所降低,r2略有增大.但相应的氮氧自由基是相反结果.阻聚剂为200ppm时,共聚物中的恒比共聚点由对照实验的0.619变化为0.533,0.645,0.589和0.698相对于DTBHA,DTBNO·,TMHPHA和TMHPO·.  相似文献   

8.
采用顶部籽晶法, 生长了掺钕的新型非线性光学晶体Nd:BiB3O6, 测量了该晶体的折射率, 并拟合了晶体的折射率色散参数. 同时还测量了晶体的室温吸收谱, 并与0.2 mol/L的 NdCl3溶液的室温吸收谱进行了分析比较. 根据Judd-Ofelt理论, 拟合出晶体场唯象强度参数: Ω2 = 0.1776 × 10-20, Ω4 = 0.1282 × 10-20, Ω6 = 0.1357 × 10-20 cm2. 计算了各能级的辐射跃迁几率AJ,J', 荧光辐射寿命τ, 荧光分支比βJ', 振子强度fJ,J'等. 根据这些光学参量, 讨论了该晶体的部分性能和应用前景.  相似文献   

9.
偶氮胂Ⅲ光度法测定江水中痕量铬   总被引:5,自引:0,他引:5  
夏畅斌 《分析化学》2000,28(6):784-784
1引言废水中铬(Ⅵ)的外排直接威胁着人们的身体健康,对其监测是非常必要的。目前褪色法测定铬(Ⅵ)有:偶氮氮膦类显色剂(ε=2-3×104L·mol-1·cm-1);二溴羧基偶氮胂(ε=2×105L·mol-1·cm-1);本文观察到在硝酸介质中偶氮胂Ⅲ与具有高灵敏褪色反应,ε=1.9×106L·mol-1·cm-1。此法操作简便,灵敏度高,条件易于控制。此法用于测定江水中痕量铬(Ⅵ),获得了满意的结果。2实验部分2.1主要试剂和仪器1.0000glLC4[标准溶液,用时再配成0.SIng/L的工作溶液ZO.sg/L的偶氛肿ill溶液。722型分光光度计(上海第三…  相似文献   

10.
硼离子对铕掺杂SiO2干凝胶发光性能的影响   总被引:3,自引:0,他引:3  
采用溶胶-凝胶法制备了Al单掺和B,Al共掺的Eu掺杂SiO2干凝胶。利用荧光光谱、IR,XRD,DSC,TG/DTG等技术研究了硼离子、退火温度对样品发光性质的影响。经500℃以上退火处理用248nm激发的样品,产生Eu^3+离子^5D0→^7FJ的特征发射,^5D0→^7F1的跃迁分裂为两个峰。比较615nm处的发光强度,掺硼酸样品的发光强度是不加硼酸发光强度的3.3倍。这是因为B离子的加入,在材料中形成了Si—O—B键,破坏了网络的对称性,加强了Eu^3+的红光发射。当退火温度上升到850℃用350nm激发时,样品有很强的Eu^2+蓝光发射。Al单掺的发射中心在437nm处,发射半峰宽约为70nm,而B,Al共掺样品的发光中心蓝移到425nm处,单掺样品的蓝光强度几乎是共掺样品强度的2倍。这是由于硼酸的加入改变了基质的网络结构,从而导致单掺和共掺样品发射峰位和强度的改变。  相似文献   

11.
ZnO thin films were successfully deposited on SiO2/Si substrate using the sol–gel technique and annealed in various annealing atmospheres at 900 °C by rapid thermal annealing (RTA). X-ray diffraction revealed the (002) texture of ZnO thin films. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that the grains of the ZnO thin film were enlarged and its surface was smoothed upon annealing in oxygen. PL measurement revealed two ultraviolet (UV) luminescence bands at 375 and 380 nm. The intensity of the emission peak at 380 nm became stronger as the concentration of oxygen in the annealing atmosphere increased. The X-ray photoelectron spectrum (XPS) demonstrated that a more stoichiometric ZnO thin film was obtained upon annealing in oxygen and more excitons were generated from the radiative recombination carriers consistently. Additionally, the UV intensity increased with the thickness of ZnO thin film.  相似文献   

12.
Nanocrystalline ZnO powders have been synthesized by a low temperature solution combustion method. The photoluminescence (PL) spectrum of as-formed and heat treated ZnO shows strong violet (402, 421, 437, 485 nm) and weak green (520 nm) emission peaks respectively. The PL intensities of defect related emission bands decrease with calcinations temperature indicating the decrease of Zn(i) and V(o)(+) caused by the chemisorptions of oxygen. The results are correlated with the electron paramagnetic resonance (EPR) studies. Thermoluminescence (TL) glow curves of gamma irradiated ZnO nanoparticles exhibit a single broad glow peak at ~343°C. This can be attributed to the recombination of charge carriers released from the surface states associated with oxygen defects, mainly interstitial oxygen ion centers. The trapping parameters of ZnO irradiated with various γ-doses are calculated using peak shape method. It is observed that the glow peak intensity increases with increase of gamma dose without changing glow curve shape. These two characteristic properties such as TL intensity increases with gamma dose and simple glow curve structure is an indication that the synthesized ZnO nanoparticles might be used as good TL dosimeter for high temperature application.  相似文献   

13.
Yttrium-doped ZnO gel was spin-coated on the SiO2/Si substrate. The as-prepared ZnO:Y (YZO) thin films then underwent a rapid thermal annealing (RTA) process conducted at various temperatures. The structural and photoluminescence characteristics of the YZO films were discussed thereafter. Our results indicated that the grain size of YZO thin films being treated with various annealing temperatures became smaller as compared to the ones without being doped with yttrium. Furthermore, unlike other ZnO films, the grains of YZO thin films appeared to separate from one another rather than aggregating together as both types of the films were annealed under the same environment. The photoluminescence characteristic measured showed that the UV emission was the only radiation obtained. However, the UV emission intensity of YZO thin film was much stronger than that of the ZnO thin film after annealing them with the same condition. It was also found that the intensity increased with an increase in the annealing temperature, which was caused by the exciton generated and the texture surface of the YZO thin film.  相似文献   

14.
Self-assembled zinc oxide (ZnO) and indium-doping zinc oxide (ZnO:In) nanorod thin films were synthesized on quartz substrates without catalyst in aqueous solution by sol-gel method. The samples were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), Raman-scattering spectroscopy, room-temperature photoluminescence (PL) spectra, and temperature-dependent PL spectra measurements. XRD and Raman spectra illustrated that there were no single In2O3 phase in ZnO lattice after indium doping. The PL spectra of ZnO showed a strong UV emission band located at 394 nm and a very weak visible emission associated with deep-level defects. Indium incorporation induced the shift of optical band gap, quenching of the near-band-edge photoluminescence and enhanced LO mode multiphonon resonant Raman scattering in ZnO crystals at different temperatures. Abnormal temperature dependence of UV emission integrated intensity of ZnO and ZnO:In samples is observed. The local state emission peak of ZnO:In samples at 3.37 eV is observed in low-temperature PL spectra. The near-band-edge emission peak at room temperature was a mixture of excitons and impurity-related transitions for both of two samples.  相似文献   

15.
A large quantity of Zinc oxide (ZnO) comb-like structure and high-density well-aligned ZnO nanorod arrays were prepared on silicon substrate via thermal evaporation process without any catalyst. The morphology, growth mechanism, and optical properties of the both structures were investigated using XRD, SEM, TEM and PL. The resulting comb-teeth, with a diameter about 20 nm, growing along the 0001 direction have a well-defined epitaxial relationship with the comb ribbon. The ZnO nanorod arrays have a diameter about 200 nm and length up to several micrometers growing approximately vertical to the Si substrate. A ZnO film was obtained before the nanorods growth. A growth model is proposed for interpreting the growth mechanism of comb-like zigzag-notch nanostructure. Room temperature photoluminescence measurements under excitation wavelength of 325 nm showed that the ZnO comb-like nanostructure has a weak UV emission at around 384 nm and a strong green emission around 491 nm, which correspond to a near band-edge transition and the singly ionized oxygen vacancy, respectively. In contrast, a strong and sharp UV peak and a weak green peak was obtained from the ZnO nanorod arrays.  相似文献   

16.
ZnO and ZnO:Zn powder phosphors were prepared by the polyol-method followed by annealing in air and reducing gas, respectively. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectra (XPS), electron paramagnetic resonance (EPR), and photoluminescence (PL) and cathodoluminescence (CL) spectra, respectively. The results indicate that all samples are in agreement with the hexagonal structure of the ZnO phase and the particle sizes are in the range of 1-2 microm. The PL and CL spectra of ZnO powders annealed at 950 degrees C in air consist of a weak ultraviolet emission band (approximately 390 nm) and a broad emission band centered at about 527 nm, exhibiting yellow emission color to the naked eyes. When the sample was reduced at the temperatures from 500 to 1050 degrees C, the yellow emission decreased gradually and disappeared completely at 800 degrees C, whereas the ultraviolet emission band became the strongest. Above this temperature, the green emission ( approximately 500 nm) appeared and increased with increasing of reducing temperatures. According to the EPR results and spectral analysis, the yellow and green emissions may arise from the transitions of photogenerated electron close to the conduction band to the deeply trapped hole in the single negatively charged interstitial oxygen ion (Oi(-)) and the single ionized oxygen vacancy (V.O) centers, respectively.  相似文献   

17.
In this work, we investigated the influence of annealing on the crystallinity, microstructures, and photoluminescence (PL) properties of ZnO nanoparticles prepared by sol–gel method. The annealing was carried out both in air and vacuum. X-ray powder diffraction, scanning electron microscopy, and ultraviolet–visible spectroscopy were used to characterize the crystal structures, diameter, surface morphology, and PL properties of ZnO nanoparticles. It has been found that both the as-grown and annealed ZnO nanoparticles had a hexagonal wurtzite crystal structure, and their average diameter and crystallinity increased with the anneal time and temperature. Pure blue-emitting behavior was observed in all samples. The emission intensity of ZnO nanoparticles was found to be enhanced after annealing, but it was highly dependent on the annealing conditions. Optimal annealing conditions both in air and vacuum were obtained for achieving maximum emission intensity in the ZnO nanoparticles. The dependence of PL properties of the ZnO nanoparticles on the annealing conditions was discussed.  相似文献   

18.
Photoconductivity and photoluminescence studies of ZnO nanoparticles (NPs) synthesized by co-precipitation method capped with thioglycerol are carried out. The effect of annealing at 300°C is also studied. The transmission electron micrograph (TEM) and X-ray diffraction (XRD) pattern confirm the hexagonal wurtzite structure of ZnO nanoparticles. The UV-vis absorption spectrum of ZnO NPs shows blue shift of absorption peak as compared to bulk ZnO. The photoluminescence (PL) spectra of as-synthesized ZnO NPs show band edge emission as well as blue-green emission. After annealing band edge emission is quenched. Photocurrent is found to vary super linearly at high voltage for both as-synthesized as well as annealed ZnO NPs. Time resolved rise and decay photocurrent spectra are found to exhibit anomalous photoconductivity for as-synthesized as well as annealed ZnO NPs wherein the photocurrent decreases even during steady illumination.  相似文献   

19.
ZnO particles were prepared by Au-catalyzed vapor phase transport method on silicon substrate. Scanning electron microscopy(SEM) images show many ZnO particles were formed on the sample surface. They grew up layer by layer along the c-axis, which was confirmed by the results of X-ray diffraction(XRD). The morphology of ZnO particles is close to hemisphere and its formation process could be seen from the SEM image. The room temperature photoluminescence(PL) measurement revealed a narrow UV emission peak at 3.27 eV and a broad green emission peak at 2.45 eV, which was caused by the near-band-edge and deep-level emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号